Stability of the Shab K+ channel conductance in 0 K+ solutions: the role of the membrane potential
- PMID: 17704149
- PMCID: PMC2098742
- DOI: 10.1529/biophysj.106.095794
Stability of the Shab K+ channel conductance in 0 K+ solutions: the role of the membrane potential
Abstract
Shab channels are fairly stable with K(+) present on only one side of the membrane. However, on exposure to 0 K(+) solutions on both sides of the membrane, the Shab K(+) conductance (G(K)) irreversibly drops while the channels are maintained undisturbed at the holding potential. Herein it is reported that the drop of G(K) follows first-order kinetics, with a voltage-dependent decay rate r. Hyperpolarized potentials drastically inhibit the drop of G(K). The G(K) drop at negative potentials cannot be explained by a shift in the voltage dependence of activation. At depolarized potentials, where the channels undergo a slow inactivation process, G(K) drops in 0 K(+) with rates slower than those predicted based on the behavior of r at negative potentials, endowing the r-V(m) relationship with a maximum. Regardless of voltage, r is very small compared with the rate of ion permeation. Observations support the hypothesized presence of a stabilizing K(+) site (or sites) located either within the pore itself or in its external vestibule, at an inactivation-sensitive location. It is argued that part of the G(K) stabilization achieved at hyperpolarized potentials could be the result of a conformational change in the pore itself.
Figures









References
-
- Doyle, D. A., C. J. Morais, A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 280:69–77. - PubMed
-
- Long, S. B., E. B. Campbell, and R. MacKinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 309:897–903. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical