Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 1;99(4):811-20.
doi: 10.1002/bit.21628.

Silicate mineral dissolution during heap bioleaching

Affiliations

Silicate mineral dissolution during heap bioleaching

Mark Dopson et al. Biotechnol Bioeng. .

Abstract

Silicate minerals are present in association with metal sulfides in ores and their dissolution occurs when the sulfide minerals are bioleached in heaps for metal recovery. It has previously been suggested that silicate mineral dissolution can affect mineral bioleaching by acid consumption, release of trace elements, and increasing the viscosity of the leach solution. In this study, the effect of silicates present in three separate samples in conjunction with chalcopyrite and a complex multi-metal sulfide ore on heap bioleaching was evaluated in column bioreactors. Fe(2+) oxidation was inhibited in columns containing chalcopyrite samples A and C that leached 1.79 and 1.11 mM fluoride, respectively but not in sample B that contained 0.14 mM fluoride. Microbial Fe(2+) oxidation inhibition experiments containing elevated fluoride concentrations and measurements of fluoride release from the chalcopyrite ores supported that inhibition of Fe(2+) oxidation during column leaching of two of the chalcopyrite ores was due to fluoride toxicity. Column bioleaching of the complex sulfide ore was carried out at various temperatures (7-50 degrees C) and pH values (1.5-3.0). Column leaching at pH 1.5 and 2.0 resulted in increased acid consumption rates and silicate dissolution such that it became difficult to filter the leach solutions and for the leach liquor to percolate through the column. However, column temperature (at pH 2.5) only had a minor effect on the acid consumption and silicate dissolution rates. This study demonstrates the potential negative impact of silicate mineral dissolution on heap bioleaching by microbial inhibition and liquid flow.

PubMed Disclaimer

Publication types

LinkOut - more resources