Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 11;46(36):10266-78.
doi: 10.1021/bi062284r. Epub 2007 Aug 18.

Importance of partially unfolded conformations for Mg(2+)-induced folding of RNA tertiary structure: structural models and free energies of Mg2+ interactions

Affiliations

Importance of partially unfolded conformations for Mg(2+)-induced folding of RNA tertiary structure: structural models and free energies of Mg2+ interactions

Dan Grilley et al. Biochemistry. .

Abstract

RNA molecules in monovalent salt solutions generally adopt a set of partially folded conformations containing only secondary structure, the intermediate or I state. Addition of Mg2+ strongly stabilizes the native tertiary structure (N state) relative to the I state. In this paper, a combination of experimental and computational approaches is used to estimate the free energy of the interaction of Mg2+ with partially folded I state RNAs and to consider the possibility that Mg2+ favors "compaction" of the I state to a set of conformations with a higher average charge density. A sequence variant with a drastically destabilized tertiary structure was used as a mimic of I state RNA; as measured by small-angle X-ray scattering, it adopted a progressively more compact conformation over a wide Mg2+ concentration range. Average free energies of the interaction of Mg2+ with the I state mimic were obtained by a fluorescence titration method. To interpret these experimental data further, we generated molecular models of the I state and used them in calculations with the nonlinear Poisson-Boltzmann equation to estimate the change in Mg2+-RNA interaction free energy as the average I state dimensions decrease from expanded to compact. The same models were also used to reproduce quantitatively the experimental difference in excess Mg2+ between N and I states. On the basis of these experiments and calculations, I state compaction appears to enhance Mg2+-I state interaction free energies by 10-20%, but this enhancement is at most 5% of the overall Mg2+-associated stabilization free energy for this rRNA fragment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources