Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 7;148(3):700-11.
doi: 10.1016/j.neuroscience.2007.06.050. Epub 2007 Jul 17.

Abnormalities in neuromuscular junction structure and skeletal muscle function in mice lacking the P2X2 nucleotide receptor

Affiliations

Abnormalities in neuromuscular junction structure and skeletal muscle function in mice lacking the P2X2 nucleotide receptor

M Ryten et al. Neuroscience. .

Abstract

ATP is co-released in significant quantities with acetylcholine from motor neurons at skeletal neuromuscular junctions (NMJ). However, the role of this neurotransmitter in muscle function remains unclear. The P2X2 ion channel receptor subunit is expressed during development of the skeletal NMJ, but not in adult muscle fibers, although it is re-expressed during muscle fiber regeneration. Using mice deficient for the P2X2 receptor subunit for ATP (P2X2(-/-)), we demonstrate a role for purinergic signaling in NMJ development. Whereas control NMJs were characterized by precise apposition of pre-synaptic motor nerve terminals and post-synaptic junctional folds rich in acetylcholine receptors (AChRs), NMJs in P2X2(-/-) mice were disorganized: misapposition of nerve terminals and post-synaptic AChR expression localization was common; the density of post-synaptic junctional folds was reduced; and there was increased end-plate fragmentation. These changes in NMJ structure were associated with muscle fiber atrophy. In addition there was an increase in the proportion of fast type muscle fibers. These findings demonstrate a role for P2X2 receptor-mediated signaling in NMJ formation and suggest that purinergic signaling may play an as yet largely unrecognized part in synapse formation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms