A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation
- PMID: 17707232
- PMCID: PMC2709280
- DOI: 10.1016/j.molcel.2007.07.024
A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation
Abstract
Deciphering the epigenetic "code" remains a central issue in transcriptional regulation. Here, we report the identification of a JAMM/MPN(+) domain-containing histone H2A deubiquitinase (2A-DUB, or KIAA1915/MYSM1) specific for monoubiquitinated H2A (uH2A) that has permitted delineation of a strategy for specific regulatory pathways of gene activation. 2A-DUB regulates transcription by coordinating histone acetylation and deubiquitination, and destabilizing the association of linker histone H1 with nucleosomes. 2A-DUB interacts with p/CAF in a coregulatory protein complex, with its deubiquitinase activity modulated by the status of acetylation of nucleosomal histones. Consistent with this mechanistic role, 2A-DUB participates in transcriptional regulation events in androgen receptor-dependent gene activation, and the levels of uH2A are dramatically decreased in prostate tumors, serving as a cancer-related mark. We suggest that H2A ubiquitination represents a widely used mechanism for many regulatory transcriptional programs and predict that various H2A ubiquitin ligases/deubiquitinases will be identified for specific cohorts of regulated transcription units.
Figures
References
-
- Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J, Hoeijmakers JH, Grootegoed JA. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol. 1999;207:322–333. - PubMed
-
- Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem. 2005;280(18):17732–17736. - PubMed
-
- Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science. 2003;301(5636):1090–1093. - PubMed
-
- Boyer LA, Latek RR, Peterson CL. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol. 2004;5(2):158–163. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
