Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 12;282(41):30039-50.
doi: 10.1074/jbc.M703026200. Epub 2007 Aug 20.

Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells

Affiliations
Free article

Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells

Steven J Greco et al. J Biol Chem. .
Free article

Abstract

The RE-1 silencer of transcription (REST) is a transcriptional regulator that represses neuron-specific genes in non-neuronal tissues by remodeling chromatin structure. We have utilized human mesenchymal stem cells (MSCs) as a research tool to understand the molecular mechanisms that regulate a neurogenic program of differentiation in non-neuronal tissue. MSCs are mesoderm-derived cells that generate specialized cells such as stroma, fat, bone, and cartilage. We have reported previously the transdifferentiation of MSCs into functional neuronal cells (Cho, K. J., Trzaska, K. A., Greco, S. J., McArdle, J., Wang, F. S., Ye, J.-H., and Rameshwar, P. (2005) Stem Cells 23, 383-391). Expression of the neurotransmitter gene TAC1 was detected only in neuronal cells and thus served as a model to study transcriptional regulation of neuron-specific genes in undifferentiated MSCs. Bone marrow stromal cells are known to transiently express TAC1 following stimulation with the microenvironmental factor interleukin-1alpha. We thus compared the effects of interleukin-1alpha stimulation and neuronal induction of MSCs on TAC1 regulation. Transcription factor mapping of the 5'-flanking region of the TAC1 promoter predicted two REST-binding sites adjacent to one NFkappaB site within exon 1. Chromatin immunoprecipitation, mutagenesis, and loss-of-function studies showed that both transcription factors synergistically mediated repression of TAC1 in the neurogenic and microenvironmental models. Together, the results support the novel finding of synergism between REST and NFkappaB in the suppression of TAC1 in non-neuronal cells.

PubMed Disclaimer

Publication types

LinkOut - more resources