Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;299(8):373-9.
doi: 10.1007/s00403-007-0779-0. Epub 2007 Aug 21.

Regulation of the extracellular matrix remodeling by lutein in dermal fibroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts

Affiliations

Regulation of the extracellular matrix remodeling by lutein in dermal fibroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts

Neena Philips et al. Arch Dermatol Res. 2007 Oct.

Abstract

With aging and cancer there is increased expression or activity of matrix metalloproteinases (MMPs) that degrade and remodel the structural extracellular matrix (ECM). In addition, exposure of skin to ultraviolet (UV) radiation (photoaging) leads to loss of cell viability, membrane damage, and deposition of excessive elastotic material. Lutein has antioxidant, anti-inflammatory, photoprotective, and anti-carcinogenic properties. The goal of this research was to investigate lutein's anti-aging and anti-carcinogenic effects via the regulation of the extracellular matrix remodeling. To this purpose, the effects of lutein on the expression of MMPs and their inhibitors (TIMPs, tissue inhibitors of metalloproteinases) in dermal fibroblasts (intrinsic aging) and melanoma cells were examined. Further, for lutein's photoprotective effects, the regulation of cell viability, membrane integrity, and elastin expression in the non-irradiated, and UVA or UVB radiation exposed fibroblasts were analyzed. Lutein significantly inhibited MMP-1 expression, transcriptionally, and MMP-2 protein levels in dermal fibroblasts, without altering TIMPs expression. It significantly inhibited MMP-1 expression in melanoma cells while stimulating TIMP-2. Lutein did not alter fibroblast or melanoma cell viability or membrane integrity. In ultraviolet radiation exposed fibroblasts, lutein improved cell viability, membrane integrity and inhibited elastin expression, though more significantly in the UVB exposed fibroblasts. In summary, the mechanism to lutein's anti-aging and anti-carcinogenic effects include the inhibition of MMP to TIMP ratio in dermal fibroblasts and melanoma cells, and the inhibition of cell loss, membrane damage and elastin expression in ultraviolet radiation exposed fibroblasts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms