Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul-Aug;20(4):217-27.
doi: 10.1080/10717540701481275.

Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial

Affiliations
Free article

Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial

Lucie Martineau et al. J Invest Surg. 2007 Jul-Aug.
Free article

Erratum in

  • J Invest Surg. 2008 Nov-Dec;21(6):375. Peng, Henry T [added]; Hung, Andy [added]

Abstract

Wound infections, especially those associated with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, offer considerable challenges for clinicians. Our laboratory has recently developed novel composite biomaterials (DRDC) for wound dressing applications, and demonstrated their in vitro bactericidal efficacy. In the present study, we assessed the proliferation of planktonic and sessile Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in porcine full-thickness wounds covered for up to 48 h with either saline- or mafenide acetate-loaded DRDC puffs and meshes. All biomaterials were applied 4 h following bacterial inoculation of the wounds with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, to allow colonization of the tissues and initiation of biofilm formation. The drug-loaded biomaterials eradicated both the planktonic and biofilm bacteria in the wounds within 24 h (p <. 05), irrespective of the bacterial strain or architecture of the dressing. While the wound bioburdens increased in the ensuing 24 h, they remained approximately 2 log(10) colony-forming units (CFU) below (p <. 05) their respective baseline values. Similarly, less than 4 log(10) CFU was recovered in the drug-loaded DRDC biomaterials throughout the study. These data show that the DRDC puffs and meshes are effective in delivering certain medications, such as antimicrobial agents, to the wound bed, suggesting considerable value of this material for treating wounds, especially those with irregular shapes, contours, and depths.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources