Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Sep;45(6):475-90.
doi: 10.1080/13693780701449425.

DNA and the classical way: identification of medically important molds in the 21st century

Affiliations
Review

DNA and the classical way: identification of medically important molds in the 21st century

S Arunmozhi Balajee et al. Med Mycol. 2007 Sep.

Abstract

The advent of the 21st century has seen significant advances in the methods and practices used for identification of medically important molds in the clinical microbiology laboratory. Historically, molds have been identified by using observations of colonial and microscopic morphology, along with tables, keys and textbook descriptions. This approach still has value for the identification of many fungal organisms, but requires expertise and can be problematic in determining a species identification that is timely and useful in the management of high-risk patients. For the increasing number of isolates that are uncommon, atypical, or unusual, DNA-based identification methods are being increasingly employed in many clinical laboratories. These methods include the commercially available GenProbe assay, methods based on the polymerase chain reaction such as single-step PCR, RAPD-PCR, rep-PCR, nested PCR, PCR-RFLP, PCR-EIA, and more recent microarray-based, Luminex technology-based, and real-time PCR-based methods. Great variation in assay complexity, targets, and detection methods can be found, and many of these methods have not been widely used or rigorously validated. The increasing availability of DNA sequencing chemistry has made comparative DNA sequence analysis an attractive alternative tool for fungal identification. DNA sequencing methodology can be purchased commercially or developed in-house; such methods display varying degrees of usefulness depending on the breadth and reliability of the databases used for comparison. The future success of sequencing-based approaches will depend on the choice of DNA target, the reliability of the result, and the availability of a validated sequence database for query and comparison. Future studies will be required to determine sequence homology breakpoints and to assess the accuracy of molecular-based species identification in various groups of medically important filamentous fungi. At this time, a polyphasic approach to identification that combines morphologic and molecular methods will ensure the greatest success in the management of patients with fungal infections.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources