Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;20(4):513-28.
doi: 10.1068/p200513.

The detectability of geometric structure in rapidly changing optical patterns

Affiliations

The detectability of geometric structure in rapidly changing optical patterns

J S Lappin et al. Perception. 1991.

Abstract

Human vision is sensitive to the coherent structure and motion of simple dot patterns undergoing rapid random transformations, even when the component dots are widely separated spatially. A study is reported in which visual sensitivity to translations, rotations, expansions, pure shear, and additive combinations of these transformations was investigated. Observers discriminated between coherent (correlated) movements, in which all the component dots moved simultaneously in corresponding directions and distances, and incoherent (uncorrelated) movements, in which the movements of individual dots were statistically independent. In experiment 1 the accuracy of coherence discrimination was found to be similar for all four of the basic transformations and to increase linearly with the distance of the movements. The discriminability of coherent versus incoherent motion was also found to be similar to the detectability of any motion, suggesting that concurrent movements of individual dots are visually interrelated. In experiments 2 and 3 the visual independence of these four groups of transformations was tested by comparing the accuracy of coherence discrimination of each of the transformations presented alone with that when added to background motions produced by each of the four transformations. Coherence discriminations were less accurate when the target transformation was added to another background transformation, indicating that these transformations are not visually independent. Rotations and expansions, however, were visually independent. In experiment 3 qualitatively similar effects for patterns of several different sizes and dot densities were found. In general, an impressive visual sensitivity to globally coherent structure and motion under several different geometric transformations was observed in these experiments. A basic theoretical issue concerns the local visual mechanisms underlying this sensitivity.

PubMed Disclaimer

Publication types

LinkOut - more resources