Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus
- PMID: 17712547
- PMCID: PMC2039833
- DOI: 10.1007/s00125-007-0776-z
Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus
Abstract
Type 2 diabetes is associated with excessive food intake and a sedentary lifestyle. Local inflammation of white adipose tissue induces cytokine-mediated insulin resistance of adipocytes. This results in enhanced lipolysis within these cells. The fatty acids that are released into the cytosol can be removed by mitochondrial beta-oxidation. The flux through this pathway is normally limited by the rate of ADP supply, which in turn is determined by the metabolic activity of the adipocyte. It is expected that the latter does not adapt to an increased rate of lipolysis. We propose that elevated fatty acid concentrations in the cytosol of adipocytes induce mitochondrial uncoupling and thereby allow mitochondria to remove much larger amounts of fatty acids. By this, release of fatty acids out of adipocytes into the circulation is prevented. When the rate of fatty acid release into the cytosol exceeds the beta-oxidation capacity, cytosolic fatty acid concentrations increase and induce mitochondrial toxicity. This results in a decrease in beta-oxidation capacity and the entry of fatty acids into the circulation. Unless these released fatty acids are removed by mitochondrial oxidation in active muscles, these fatty acids result in ectopic triacylglycerol deposits, induction of insulin resistance, beta cell damage and diabetes. Thiazolidinediones improve mitochondrial function within adipocytes and may in this way alleviate the burden imposed by the excessive fat accumulation associated with the metabolic syndrome. Thus, the number and activity of mitochondria within adipocytes contribute to the threshold at which fatty acids are released into the circulation, leading to insulin resistance and type 2 diabetes.
Figures


Comment in
-
Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.Diabetologia. 2008 Mar;51(3):394-7. doi: 10.1007/s00125-007-0901-z. Epub 2007 Dec 21. Diabetologia. 2008. PMID: 18097647
Similar articles
-
Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: do adipocytes consume sufficient amounts of oxygen to oxidise fatty acids?Diabetologia. 2008 May;51(5):907-8. doi: 10.1007/s00125-008-0963-6. Epub 2008 Mar 4. Diabetologia. 2008. PMID: 18317722 Free PMC article. No abstract available.
-
Mitochondria, body fat and type 2 diabetes: what is the connection?Minerva Med. 2008 Jun;99(3):241-51. Minerva Med. 2008. PMID: 18497722 Review.
-
Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype.Biochim Biophys Acta. 2013 May;1831(5):986-1003. doi: 10.1016/j.bbalip.2013.02.003. Epub 2013 Feb 20. Biochim Biophys Acta. 2013. PMID: 23454373
-
Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus.Int J Obes Relat Metab Disord. 2004 Dec;28 Suppl 4:S12-21. doi: 10.1038/sj.ijo.0802853. Int J Obes Relat Metab Disord. 2004. PMID: 15592481 Review.
-
Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.Diabetologia. 2008 Mar;51(3):394-7. doi: 10.1007/s00125-007-0901-z. Epub 2007 Dec 21. Diabetologia. 2008. PMID: 18097647
Cited by
-
High glucose-induced inhibition of osteoblast like MC3T3-E1 differentiation promotes mitochondrial perturbations.PLoS One. 2022 Jun 17;17(6):e0270001. doi: 10.1371/journal.pone.0270001. eCollection 2022. PLoS One. 2022. PMID: 35714142 Free PMC article.
-
Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: do adipocytes consume sufficient amounts of oxygen to oxidise fatty acids?Diabetologia. 2008 May;51(5):907-8. doi: 10.1007/s00125-008-0963-6. Epub 2008 Mar 4. Diabetologia. 2008. PMID: 18317722 Free PMC article. No abstract available.
-
LXRα fuels fatty acid-stimulated oxygen consumption in white adipocytes.J Lipid Res. 2014 Feb;55(2):247-57. doi: 10.1194/jlr.M043422. Epub 2013 Nov 20. J Lipid Res. 2014. PMID: 24259533 Free PMC article.
-
High metabolic substrate load induces mitochondrial dysfunction in rat skeletal muscle microvascular endothelial cells.Physiol Rep. 2021 Jul;9(14):e14855. doi: 10.14814/phy2.14855. Physiol Rep. 2021. PMID: 34288561 Free PMC article.
-
Cumulus cell mitochondrial activity in relation to body mass index in women undergoing assisted reproductive therapy.BBA Clin. 2017 Apr 5;7:141-146. doi: 10.1016/j.bbacli.2017.03.005. eCollection 2017 Jun. BBA Clin. 2017. PMID: 28660134 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s00125-003-1190-9', 'is_inner': False, 'url': 'https://doi.org/10.1007/s00125-003-1190-9'}, {'type': 'PubMed', 'value': '12637977', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12637977/'}]}
- Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes mellitus. Diabetologia 46:3–19 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s11883-003-0007-0', 'is_inner': False, 'url': 'https://doi.org/10.1007/s11883-003-0007-0'}, {'type': 'PubMed', 'value': '12911846', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12911846/'}]}
- Reaven GM (2003) The insulin resistance syndrome. Curr Atheroscler Rep 5:364–371 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.45.7.947', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.45.7.947'}, {'type': 'PubMed', 'value': '8666147', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8666147/'}]}
- Ferrannini E, Vichi S, Beck-Nielsen H, Laakso M, Paolisso G, Smith U (1996) Insulin action and age. European group for the study of insulin resistance (EGIR). Diabetes 45:947–953 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.51.2007.S234', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.51.2007.s234'}, {'type': 'PubMed', 'value': '11815485', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11815485/'}]}
- Fritsche A, Madaus A, Stefan N et al (2002) Relationships among age, proinsulin conversion, and beta-cell function in nondiabetic humans. Diabetes 51(Suppl 1):S234–S239 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.bbabio.2006.03.024', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.bbabio.2006.03.024'}, {'type': 'PubMed', 'value': '16697347', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16697347/'}]}
- Di Paola M, Lorusso M (2006) Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta 1757:1330–1337 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical