Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb;189(2):93-100.
doi: 10.1007/s00203-007-0297-7. Epub 2007 Aug 23.

The highly toxic oxyanion tellurite (TeO (3) (2-) ) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system

Affiliations

The highly toxic oxyanion tellurite (TeO (3) (2-) ) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system

Roberto Borghese et al. Arch Microbiol. 2008 Feb.

Abstract

The facultative phototroph Rhodobacter capsulatus takes up the highly toxic oxyanion tellurite when grown under both photosynthetic and respiratory growth conditions. Previous works on Escherichia coli and R. capsulatus suggested that tellurite uptake occurred through a phosphate transporter. Here we present evidences indicating that tellurite enters R. capsulatus cells via a monocarboxylate transport system. Indeed, intracellular accumulation of tellurite was inhibited by the addition of monocarboxylates such as pyruvate, lactate and acetate, but not by dicarboxylates like malate or succinate. Acetate was the strongest tellurite uptake antagonist and this effect was concentration dependent, being already evident at 1 microM acetate. Conversely, tellurite at 100 microM was able to restrict the acetate entry into the cells. Both tellurite and acetate uptakes were energy dependent processes, since they were abolished by the protonophore FCCP and by the respiratory electron transport inhibitor KCN. Interestingly, cells grown on acetate, lactate or pyruvate showed a high level resistance to tellurite, whereas cells grown on malate or succinate proved to be very sensitive to the oxyanion. Taking these data together, we propose that: (a) tellurite enters R. capsulatus cells via an as yet uncharacterized monocarboxylate(s) transporter, (b) competition between acetate and tellurite results in a much higher level of tolerance against the oxyanion and (c) the toxic action of tellurite at the cytosolic level is significantly restricted by preventing tellurite uptake.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources