Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 1;120(Pt 17):3045-52.
doi: 10.1242/jcs.010728.

The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes

Affiliations

The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes

Chaoqian Xu et al. J Cell Sci. .

Retraction in

Abstract

The microRNAs miR-1 and miR-133 are preferentially expressed in cardiac and skeletal muscles and have been shown to regulate differentiation and proliferation of these cells. We report here a novel aspect of cellular function of miR-1 and miR-133 regulation of cardiomyocyte apoptosis. miR-1 and miR-133 produced opposing effects on apoptosis, induced by oxidative stress in H9c2 rat ventricular cells, with miR-1 being pro-apoptotic and miR-133 being anti-apoptotic. miR-1 level was significantly increased in response to oxidative stress. We identified single target sites for miR-1 only, in the 3'-untranslated regions of the HSP60 and HSP70 genes, and multiple putative target sites for miR-133 throughout the sequence of the caspase-9 gene. miR-1 reduced the levels of HSP60 and HSP70 proteins without changing their transcript levels, whereas miR-133 did not affect HSP60 and HSP70 expression at all. By contrast, miR-133 repressed caspase-9 expression at both the protein and mRNA levels. The post-transcriptional repression of HSP60 and HSP70 and caspase-9 was further confirmed by luciferase reporter experiments. Our results indicate that miR-1 and miR-133 are involved in regulating cell fate with increased miR-1 and/or decreased miR-133 levels favoring apoptosis and decreased miR-1 and/or miR-133 levels favoring survival. Post-transcriptional repression of HSP60 and HSP70 by miR-1 and of caspase-9 by miR-133 contributes significantly to their opposing actions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources