Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;48(11):2463-70.
doi: 10.1194/jlr.M700315-JLR200. Epub 2007 Aug 22.

Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain

Affiliations
Free article

Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain

Miki Igarashi et al. J Lipid Res. 2007 Nov.
Free article

Abstract

Fifteen weeks of dietary n-3 PUFA deprivation increases coefficients of conversion of circulating alpha-linolenic acid (alpha-LNA; 18:3n-3) to docosahexaenoic acid (DHA; 22:6n-3) in rat liver but not brain. To determine whether these increases reflect organ differences in enzymatic activities, we examined brain and liver expression of converting enzymes and of two of their transcription factors, peroxisome proliferator-activated receptor alpha (PPARalpha) and sterol-regulatory element binding protein-1 (SREBP-1), in rats fed an n-3 PUFA "adequate" (4.6% alpha-LNA of total fatty acid, no DHA) or "deficient" (0.2% alpha-LNA, no DHA) diet for 15 weeks after weaning. In rats fed the deficient compared with the adequate diet, mRNA and activity levels of Delta5 and Delta6 desaturases and elongases 2 and 5 were upregulated in liver but not brain, but liver PPARalpha and SREBP-1 mRNA levels were unchanged. In rats fed the adequate diet, enzyme activities generally were higher in liver than brain. Thus, differences in conversion enzyme expression explain why the liver has a greater capacity to synthesize DHA from circulating alpha-LNA than does the brain in animals on an adequate n-3 PUFA diet and why liver synthesis capacity is increased by dietary deprivation. These data suggest that liver n-3 PUFA metabolism determines DHA availability to the brain when DHA is absent from the diet.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources