Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb 21;27(9):1218-30.
doi: 10.1038/sj.onc.1210741. Epub 2007 Aug 27.

Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis

Affiliations

Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis

A Gal et al. Oncogene. .

Abstract

To better understand the dual, tumour-suppressive and tumour-promoting function of transforming growth factor-beta (TGFbeta), we analysed mammary epithelial NMuMG cells in response to short and long-term TGFbeta exposure. NMuMG cells became proliferation-arrested and apoptotic after exposure to TGFbeta for 2-5 days, whereas surviving cells underwent epithelial-mesenchymal transition (EMT). After chronic TGFbeta exposure (2-3 weeks), however, NMuMG cells became resistant to proliferation arrest and apoptosis, showing sustained EMT instead (TD cells). EMT was fully reversed by a pharmacologic TGFbeta-receptor-I kinase inhibitor or withdrawal of TGFbeta for 6-12 days. Interestingly, both cell cycle arresting/proapoptotic (Smads, p38 kinase) and antiapoptotic, proliferation and EMT-promoting signalling pathways (PI3K-PKB/Akt, ERK) were co-suppressed to low, but significant levels. Except for PI3K-Akt, TGFbeta-dependent downregulation of these signalling pathways in transdifferentiated (TD) cells was fully reversed upon TGFbeta withdrawal, together with partial re-induction of proliferation arrest and apoptosis. Co-injection of non-tumorigenic NMuMG cells with tumour-forming CHO cells oversecreting exogenous TGFbeta1 (CHO-TGFbeta1) allowed outgrowth of epithelioid cells in CHO-TGFbeta1 cell-induced tumours. These epithelial islands enhanced CHO-TGFbeta1 tumour cell proliferation, possibly due to chemokines (for example, JE/MCP-1) secreted by NMuMG/TD cells. We conclude that suppression of antiproliferative, proapoptotic TGFbeta signalling in TD cells may permit TGFbeta-dependent proliferation, survival and EMT-enhancing signalling pathways to act at low levels. Thus, TGFbeta may modulate its own signalling to facilitate switching from tumour suppression to tumour progression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources