Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;51(4):345-51.
doi: 10.1159/000107677. Epub 2007 Aug 28.

Effects of zinc on hepatic antioxidant systems and the mRNA expression levels assayed by cDNA microarrays in rats

Affiliations

Effects of zinc on hepatic antioxidant systems and the mRNA expression levels assayed by cDNA microarrays in rats

Ming-Yan Jing et al. Ann Nutr Metab. 2007.

Abstract

Background: This study evaluated effects of zinc on the hepatic lipid peroxidation, antioxidant components and mRNA expression levels in rats.

Methods: Three diets with different Zn levels including Zn adequacy (ZA; 34.50 mg/kg, control), Zn deficiency (ZD; 3.30 mg/kg), and Zn overdose (ZO; 345.45 mg/kg) were fed to rats for 6 weeks. The mRNA expression levels were analyzed by cDNA microarrays.

Results: The body weight of rats fed the ZD diet was less (p < 0.01) than that of rats fed the ZA diet. Zn overdose elevated body weight, but the increase was not detected (p > 0.05) at week 6. Although copper and iron status in serum were declined (p < 0.01), those in liver were not affected (p > 0.05) by the high intake of zinc. The glutathione peroxidase (GPx) and glutathione (GSH) remained unchanged (p > 0.05) by zinc treatment. Rats fed the ZD diet showed reductions(p < 0.01) in the Cu-Zn superoxide dismutase (Cu-Zn SOD) and catalase (CAT) activity, and increases (p < 0.01) in the malondialdehyde and hydrogen peroxide (H(2)O(2)) contents. Rats fed the ZO diet particularly had higher Cu-Zn SOD (p < 0.01) activity. The mRNA expression levels of SOD were upregulated in the ZO group, and CAT was downregulated in the ZD group, while no changes in GPx mRNA levels were found after zinc treatment.

Conclusion: The study suggested that zinc deficiency largely decreased body weight; zinc overdose, however, moderately stimulated growth in the early growing phase of rats. High dietary zinc did not compete with liver copper and iron status. Although Zn deficiency impaired antioxidant functions, zinc overdose hardly enhanced the antioxidant systems of animals.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources