Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep-Oct;47(5):1818-28.
doi: 10.1021/ci600451t. Epub 2007 Aug 30.

Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid

Affiliations

Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid

Vinod Kasam et al. J Chem Inf Model. 2007 Sep-Oct.

Abstract

Though different species of the genus Plasmodium may be responsible for malaria, the variant caused by P. falciparum is often very dangerous and even fatal if untreated. Hemoglobin degradation is one of the key metabolic processes for the survival of the Plasmodium parasite in its host. Plasmepsins, a family of aspartic proteases encoded by the Plasmodium genome, play a prominent role in host hemoglobin cleavage. In this paper we demonstrate the use of virtual screening, in particular molecular docking, employed at a very large scale to identify novel inhibitors for plasmepsins II and IV. A large grid infrastructure, the EGEE grid, was used to address the problem of large computation resources required for docking hundreds of thousands of chemical compounds on different plasmepsin targets of P. falciparum. A large compound library of about 1 million chemical compounds was docked on 5 different targets of plasmepsins using two different docking software, namely FlexX and AutoDock. Several strategies were employed to analyze the results of this virtual screening approach including docking scores, ideal binding modes, and interactions to key residues of the protein. Three different classes of structures with thiourea, diphenylurea, and guanidino scaffolds were identified to be promising hits. While the identification of diphenylurea compounds is in accordance with the literature and thus provides a sort of "positive control", the identification of novel compounds with a guanidino scaffold proves that high throughput docking can be effectively used to identify novel potential inhibitors of P. falciparum plasmepsins. Thus, with the work presented here, we do not only demonstrate the relevance of computational grids in drug discovery but also identify several promising small molecules which have the potential to serve as candidate inhibitors for P. falciparum plasmepsins. With the use of the EGEE grid infrastructure for the virtual screening campaign against the malaria causing parasite P. falciparum we have demonstrated that resource sharing on an eScience infrastructure such as EGEE provides a new model for doing collaborative research to fight diseases of the poor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources