Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;56(9):3033-42.
doi: 10.1002/art.22839.

Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha

Affiliations

Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha

Amy L McNulty et al. Arthritis Rheum. 2007 Sep.

Abstract

Objective: To examine the hypotheses that increasing concentrations of interleukin-1 (IL-1) or tumor necrosis factor alpha (TNFalpha) inhibit the integrative repair of the knee meniscus in an in vitro model system, and that inhibitors of these cytokines will enhance repair.

Methods: Explants (8 mm in diameter) were harvested from porcine medial menisci. To simulate a full-thickness defect, a 4-mm-diameter core was removed and reinserted. Explants were cultured for 14, 28, or 42 days in the presence of 0-1,000 pg/ml of IL-1 or TNFalpha. Explants were also cultured in the presence of IL-1 or TNFalpha with IL-1 receptor antagonist (IL-1Ra) or TNF monoclonal antibody (mAb). At the end of the culture period, biomechanical testing, cell viability, and histologic analyses were performed to quantify the extent of repair.

Results: Mechanical testing revealed increased repair strength, cell accumulation, and tissue formation at the interface over time under control conditions. Pathophysiologic concentrations of both IL-1 and TNFalpha significantly decreased repair strength, cell migration, and tissue formation at the interface. The addition of IL-1Ra or TNF mAb to explants prevented the effects of IL-1 or TNFalpha, respectively.

Conclusion: Our findings document that physiologically relevant concentrations of IL-1 and TNFalpha inhibit meniscal repair in vitro and therefore may also inhibit meniscal repair during arthritis or following joint injury. The finding that IL-1Ra and TNF mAb promoted integrative meniscal repair in an inflammatory microenvironment suggests that intraarticular delivery of IL-1Ra and/or TNF mAb may be useful clinically to promote meniscal healing following injury.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources