Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul 31;237(4814):509-11.
doi: 10.1126/science.237.4814.509.

Bacterial Methanogenesis and Growth from CO2 with Elemental Iron as the Sole Source of Electrons

Bacterial Methanogenesis and Growth from CO2 with Elemental Iron as the Sole Source of Electrons

L Daniels et al. Science. .

Abstract

Previous studies of anaerobic biocorrosion have suggested that microbial sulfur and phosphorus products as well as cathodic hydrogen consumption may accelerate anaerobic metal oxidation. Methanogenic bacteria, which normally use molecular hydrogen (H(2)) and carbon dioxide (CO(2)) to produce methane (CH(4)) and which are major inhabitants of most anaerobic ecosystems, use either pure elemental iron (Fe(0)) or iron in mild steel as a source of electrons in the reduction of CO(2) to CH(4). These bacteria use Fe(0) oxidation for energy generation and growth. The mechanism of Fe(0) oxidation is cathodic depolarization, in which electrons from Fe(0) and H(+) from water produce H(2), which is then released for use by the methanogens; thermodynamic calculations show that significant Fe(0) oxidation will not occur in the absence of H(2) consumption by the methanogens. The data suggest that methanogens can be significant contributors to the corrosion of iron-containing materials in anaerobic environments.

PubMed Disclaimer

LinkOut - more resources