Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;58(11):2983-92.
doi: 10.1093/jxb/erm150. Epub 2007 Aug 30.

Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2

Affiliations

Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2

Chantal Fresneau et al. J Exp Bot. 2007.

Abstract

In order to study the impact of a decline of leaf internal CO(2) molar ratio on nitrate reductase (NR) and sucrose-phosphate synthase (SPS) activities, leaves of wheat (Triticum durum) were submitted to different treatments: slow or rapid dehydration and decline in ambient CO(2) concentration and abscisic acid (ABA) supply. In agreement with the literature, NR activity of slowly dehydrated leaves was inhibited by about 50% when net CO(2) assimilation (A(n)) decreased by 45%. NR activity of stressed leaves kept 4 h in air containing 5% CO(2) or after 2 d of re-watering was only partially restored. NR activity was slightly dependent on ambient CO(2) molar ratio, declining by 30% when non-stressed leaves were kept in CO(2)-free air for 4 h. The decline of NR activity after ABA supply (through the transpiration stream) and after rapid dehydration of non-stressed leaves was comparable with the decrease observed under low CO(2) treatment. Overall, these data suggest that a drought-induced decrease of the leaf internal CO(2) concentration is only part of the signal triggering the decline of NR activity. In disagreement with most of the literature, SPS activity increased during slow dehydration, being stimulated by 30% when A(n) declined by 40%. SPS activity of stressed leaves kept 4 h in air containing 5% CO(2) or 2 d after re-watering was slightly increased or unchanged, respectively. By contrast to NR activity, SPS activity of well-hydrated leaves was hardly affected by low CO(2). Increased SPS activity was mimicked, in non-stressed leaves, by a rapid dehydration within 4 h and by ABA fed through the transpiration stream. In durum wheat, the increase in SPS activity could be linked to ABA-based signalling during a drought stress.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources