Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;56(9):2957-67.
doi: 10.1002/art.22848.

Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis

Affiliations

Inhibition of Toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis

Shahla Abdollahi-Roodsaz et al. Arthritis Rheum. 2007 Sep.

Abstract

Objective: Degeneration of extracellular matrix of cartilage leads to the production of molecules capable of activating the immune system via Toll-like receptor 4 (TLR-4). The objective of this study was to investigate the involvement of TLR-4 activation in the development and progression of autoimmune destructive arthritis.

Methods: A naturally occurring TLR-4 antagonist, highly purified lipopolysaccharide (LPS) from Bartonella quintana, was first characterized using mouse macrophages and human dendritic cells (DCs). Mice with collagen-induced arthritis (CIA) and mice with spontaneous arthritis caused by interleukin-1 receptor antagonist (IL-1Ra) gene deficiency were treated with TLR-4 antagonist. The clinical score for joint inflammation, histologic characteristics of arthritis, and local expression of IL-1 in joints were evaluated after treatment.

Results: The TLR-4 antagonist inhibited DC maturation induced by Escherichia coli LPS and cytokine production induced by both exogenous and endogenous TLR-4 ligands, while having no effect on these parameters by itself. Treatment of CIA using TLR-4 antagonist substantially suppressed both clinical and histologic characteristics of arthritis without influencing the adaptive anti-type II collagen immunity crucial for this model. Treatment with TLR-4 antagonist strongly reduced IL-1beta expression in articular chondrocytes and synovial tissue. Furthermore, such treatment inhibited IL-1-mediated autoimmune arthritis in IL-1Ra(-/-) mice and protected the mice against cartilage and bone pathology.

Conclusion: In the present study, we demonstrate for the first time that inhibition of TLR-4 suppresses the severity of experimental arthritis and results in lower IL-1 expression in arthritic joints. Our data suggest that TLR-4 might be a novel target in the treatment of rheumatoid arthritis.

PubMed Disclaimer

Publication types