Glutamate receptor subunit expression in the rhesus macaque locus coeruleus
- PMID: 17765206
- PMCID: PMC2067256
- DOI: 10.1016/j.brainres.2007.08.007
Glutamate receptor subunit expression in the rhesus macaque locus coeruleus
Abstract
The locus coeruleus (LC) is a major noradrenergic brain nucleus that regulates states of arousal, optimizes task-oriented decision making, and may also play an important role in modulating the activity of the reproductive neuroendocrine axis. Rodent studies have shown that the LC is responsive to glutamate receptor agonists, and that it expresses various glutamate receptor subunits. However, glutamate receptor subunit expression has not been extensively examined in the primate LC. We previously demonstrated expression of the NR1 NMDA glutamate receptor subunit in the rhesus macaque LC and now extend this work by also examining the expression of non-NMDA (AMPA and kainate) ionotropic glutamate receptor subunits. Using in situ hybridization histochemistry and immunohistochemistry, we confirmed the presence of the obligatory NR1 subunit in the LC. In addition, we demonstrated expression of the AMPA glutamate receptor subunits GluR1, GluR2, and GluR3. More extensive receptor profiling, using rhesus monkey gene microarrays (Affymetrix GeneChip), further corroborated the histological findings and showed expression of mRNA encoding ionotropic glutamate receptor subunits NR2A, NR2D, GluR4, and GluR6, as well as the metabotropic glutamate receptor subunits mGluR1, mGluR3, mGluR4, mGluR5, and mGluR7. These data provide a foundation for future examination of how changes in glutamate receptor composition contribute to the control of primate physiology.
Figures


Similar articles
-
Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus.Brain Res Mol Brain Res. 2000 Jun 23;79(1-2):1-17. doi: 10.1016/s0169-328x(00)00072-3. Brain Res Mol Brain Res. 2000. PMID: 10925139
-
Laminar and cellular distribution of AMPA, kainate, and NMDA receptor subunits in monkey sensory-motor cortex.J Comp Neurol. 1999 May 17;407(4):472-90. doi: 10.1002/(sici)1096-9861(19990517)407:4<472::aid-cne2>3.0.co;2-2. J Comp Neurol. 1999. PMID: 10235640
-
Glutamate receptors in pediatric tumors of the central nervous system.Cancer Biol Ther. 2010 Mar 15;9(6):455-68. doi: 10.4161/cbt.9.6.10898. Epub 2010 Mar 9. Cancer Biol Ther. 2010. PMID: 20061814
-
Peripheral glutamate receptors: molecular biology and role in taste sensation.J Nutr. 2000 Apr;130(4S Suppl):1039S-42S. doi: 10.1093/jn/130.4.1039S. J Nutr. 2000. PMID: 10736377 Review.
-
Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.J Neural Transm (Vienna). 2014 Aug;121(8):1029-75. doi: 10.1007/s00702-014-1193-3. Epub 2014 Aug 1. J Neural Transm (Vienna). 2014. PMID: 25081016 Review.
Cited by
-
The effects of luteinizing hormone ablation/replacement versus steroid ablation/replacement on gene expression in the primate corpus luteum.Mol Hum Reprod. 2009 Mar;15(3):181-93. doi: 10.1093/molehr/gap005. Epub 2009 Jan 24. Mol Hum Reprod. 2009. PMID: 19168862 Free PMC article.
-
Dysfunctional inhibitory mechanisms in locus coeruleus neurons of the wistar kyoto rat.Int J Neuropsychopharmacol. 2015 Jan 13;18(7):pyu122. doi: 10.1093/ijnp/pyu122. Int J Neuropsychopharmacol. 2015. PMID: 25586927 Free PMC article.
-
Immunocytochemical localization of TASK-3 (K(2P)9.1) channels in monoaminergic and cholinergic neurons.Cell Mol Neurobiol. 2011 Mar;31(2):323-35. doi: 10.1007/s10571-010-9625-6. Epub 2010 Nov 17. Cell Mol Neurobiol. 2011. PMID: 21082237 Free PMC article.
-
Subunit-specific expression and function of AMPA receptors in the mouse locus coeruleus.J Anat. 2023 Nov;243(5):813-825. doi: 10.1111/joa.13922. Epub 2023 Jun 30. J Anat. 2023. PMID: 37391270 Free PMC article.
-
Locus Coeruleus Neurons' Firing Pattern Is Regulated by ERG Voltage-Gated K+ Channels.Int J Mol Sci. 2022 Dec 5;23(23):15334. doi: 10.3390/ijms232315334. Int J Mol Sci. 2022. PMID: 36499661 Free PMC article.
References
-
- Aghajanian GK, Kogan JH, Moghaddam B. Opiate withdrawal increases glutamate and aspartate efflux in the locus coeruleus: an in vivo microdialysis study. Brain Res. 1994;636:126–130. - PubMed
-
- Agren H, Koulu M, Saavedra JM, Potter WZ, Linnoila M. Circadian covariation of norepinephrine and serotonin in the locus coeruleus and dorsal raphe nucleus in the rat. Brain Res. 1986;397:353–358. - PubMed
-
- Aston-Jones G, Shipley MT, Chouvet G, Ennis M, van Bockstaele E, Pieribone V, Shiekhattar R, Akaoka H, Drolet G, Astier B, et al. Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res. 1991;88:47–75. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources