Convergence analysis of a simple minor component analysis algorithm
- PMID: 17765471
- DOI: 10.1016/j.neunet.2007.07.001
Convergence analysis of a simple minor component analysis algorithm
Abstract
Minor component analysis (MCA) is a powerful statistical tool for signal processing and data analysis. Convergence of MCA learning algorithms is an important issue in practical applications. In this paper, we will propose a simple MCA learning algorithm to extract minor component from input signals. Dynamics of the proposed MCA learning algorithm are analysed using a corresponding deterministic discrete time (DDT) system. It is proved that almost all trajectories of the DDT system will converge to minor component if the learning rate satisfies some mild conditions and the trajectories start from points in an invariant set. Simulation results will be furnished to illustrate the theoretical results achieved.
Similar articles
-
Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm.IEEE Trans Neural Netw. 2005 Nov;16(6):1318-28. doi: 10.1109/TNN.2005.852236. IEEE Trans Neural Netw. 2005. PMID: 16342477
-
Convergence analysis of deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA.Neural Netw. 2012 Dec;36:64-72. doi: 10.1016/j.neunet.2012.08.016. Epub 2012 Sep 17. Neural Netw. 2012. PMID: 23041670
-
A self-stabilizing MSA algorithm in high-dimension data stream.Neural Netw. 2010 Sep;23(7):865-71. doi: 10.1016/j.neunet.2010.04.001. Epub 2010 May 8. Neural Netw. 2010. PMID: 20452742
-
Nonlinear complex-valued extensions of Hebbian learning: an essay.Neural Comput. 2005 Apr;17(4):779-838. doi: 10.1162/0899766053429381. Neural Comput. 2005. PMID: 15829090 Review.
-
Statistical pattern recognition for macromolecular crystallographers.Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2133-43. doi: 10.1107/S090744490402061X. Epub 2004 Nov 26. Acta Crystallogr D Biol Crystallogr. 2004. PMID: 15572766 Review.
Cited by
-
An intrinsic value system for developing multiple invariant representations with incremental slowness learning.Front Neurorobot. 2013 May 30;7:9. doi: 10.3389/fnbot.2013.00009. eCollection 2013. Front Neurorobot. 2013. PMID: 23755011 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous