Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:163:235-43.
doi: 10.1016/S0079-6123(07)63014-3.

Functional regulation of the dentate gyrus by GABA-mediated inhibition

Affiliations
Review

Functional regulation of the dentate gyrus by GABA-mediated inhibition

Douglas A Coulter et al. Prog Brain Res. 2007.

Abstract

Dentate granule cells are characterized by their low levels of excitability, an important aspect of hippocampal function, which distinguishes them from other principal cells of the hippocampus. This low excitability derives in large part from the degree and nature of GABAergic inhibition evident in the dentate gyrus. Granule cells express a unique and complex assortment of GABA(A) receptor subunits, found in few areas of the brain. Associated with this receptor complexity, granule cells are endowed with both synaptic and extrasynaptic GABA(A) receptors with distinctive properties. In particular, extrasynaptic GABA(A) receptors in granule cells exhibit high affinity for GABA and do not desensitize. This results in activation of a tonic current by ambient levels of GABA present in the extracellular space. This tonic current contributes significantly to the circuit properties of the dentate gyrus. Both synaptic and extrasynaptic GABA(A) receptors exhibit profound dysregulation in animal models of temporal lobe epilepsy, which may contribute to the hippocampal hyperexcitability that defines this disorder.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources