Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Aug;12(8):960-6.
doi: 10.1634/theoncologist.12-8-960.

Profiling studies in ovarian cancer: a review

Affiliations
Free article
Review

Profiling studies in ovarian cancer: a review

Rudolf S N Fehrmann et al. Oncologist. 2007 Aug.
Free article

Abstract

Ovarian cancer is a heterogeneous disease with respect to histopathology, molecular biology, and clinical outcome. In advanced stages, surgery and chemotherapy result in an approximately 25% overall 5-year survival rate, pointing to a strong need to identify subgroups of patients that may benefit from targeted innovative molecular therapy. This review summarizes: (a) microarray research identifying gene-expression profiles in ovarian cancer; (b) the methodological flaws in the available microarray studies; and (c) applications of pathway analysis to define new molecular subgroups. Microarray technology now permits the analysis of expression levels of thousands of genes. So far seven studies have aimed to identify a genetic profile that can predict survival/clinical outcome and/or response to platinum-based therapy. To date, the clinical evidence of prognostic microarray studies has only reached the level of small retrospective studies, and there are other issues that may explain the nonreproducibility among the reported prognostic profiles, such as overfitting, technical platform differences, and accuracy of measurements. We consider pathway analysis a promising new strategy. The accumulation of small differential expressions within a meaningful molecular regulatory network might lead to a critical threshold level, resulting in ovarian cancer. Microarray technologies have already provided valuable expression data for classifying ovarian cancer and the first clues about which molecular changes in ovarian cancer could be exploited in new treatment strategies. Further improvements in technology as well as in study design, combined with pathway analysis, will allow us to detect even more subtle tumor expression differences among subgroups of ovarian cancer patients. Disclosure of potential conflicts of interest is found at the end of this article.

PubMed Disclaimer

Publication types

LinkOut - more resources