Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Nov;100(5):975-89.
doi: 10.1093/aob/mcm192. Epub 2007 Sep 1.

Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae)

Affiliations
Review

Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae)

Sally L Dillon et al. Ann Bot. 2007 Nov.

Abstract

Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species.

Genetic resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.

PubMed Disclaimer

Figures

F<sc>ig</sc>. 1.
Fig. 1.
Time-line displaying the changes in Sorghum nomenclature over time. 1House et al. (1995); 2Spangler (2003); 3Smith and Frederiksen (2000); 4Garber (1950); 5Lazarides et al. (1991); 6Hodnett et al. (2005), Price et al. (2005a); 7Dillon et al. (2007).
F<sc>ig</sc>. 2.
Fig. 2.
Growth trial of Sorghum species at seedling stage. Note the broader leaf (far left) of the Eu-sorghum, S. propinquum compared with the Para-Sorghum, Stiposorghum and Heterosorghum species.
F<sc>ig</sc>. 3.
Fig. 3.
Variation in Sorghum species seed and caryopsis morphology and size. Letters on the figure denote different species: a–e, S. bicolor caryopsis AusTRCF 322649, 322618, 322620, 322666 and 322611, respectively; f, S. propinquum; g, S. halepense; h, S. macrospermum 322277 seed and caryopsis; i, S. laxiflorum 302503 seed and caryopsis; j, S. grande 302580 seed; k, S. leiocladum 300170 seed and caryopsis; l, S. matarankense 302521 seed and caryopsis; m, S. nitidum 302539 seed; n, S. timorense 302660 seed and caryopsis; o, S. purpureo-sericeum 321134 seed and caryopsis; p, S. versicolor 321126 seed and caryopsis; q, S. amplum 302623 seed and caryopsis; r, S. angustum 302604 seed and caryopsis; s, S. brachypodium 302480 seed and caryopsis; t, S. bulbosum 302646 seed and caryopsis; u, S. ecarinatum 302661 seed; v, S. exstans 302577 seed and caryopsis; w, S. interjectum 302563 seed; x, S. intrans 302390 seed and caryopsis; y, S. plumosum 302489 seed and caryopsis; z, S. stipoideum 302644 seed.
F<sc>ig</sc>. 4.
Fig. 4.
The left-hand column shows the variation in the central endosperm and the right-hand column compares the outer layers. (A, B) Representative images of S. bicolor, showing the standard floury and vitreous endosperm, respectively. (C–H) Images from outside the Eu-Sorghums are representative of the variations observed across the species. PB, Protein bodies; M, matrix; S, starch granule; D, indentations left by protein bodies; C, channels; P, pores; CG, small polygonal starch granules forming compound granules.
F<sc>ig</sc>. 5.
Fig. 5.
Novel sub-aleurone morphology of the Para-Sorghums and Stiposorghums: (A) the characteristic S. bicolor outer endosperm and pericarp; (B) an increased magnification of the sub-aleurone layer itself; (C) a representative image of the novel morphology found in the undomesticated sorghums; (D) and (E) magnified features of the morphology shown in (C). SA, Sub-aleurone layer; A, aleurone; PB, protein bodies; M, matrix,; S, starch granule; D, indentations left by protein bodies; P, pericarp; CG, small polygonal starch granules forming compound granules.

Similar articles

Cited by

References

    1. Abu Assar AH, Uptmoor R, Abdelmula AA, Salih M, Ordon F, Friedt W. Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs) Crop Science. 2005;45:1636–1644.
    1. Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyrén P, Uhlén M, et al. Single-nucleotide polymorphism analysis by pyrosequencing. Analytical Biochemistry. 2000;280:103–110. - PubMed
    1. Aitken K, Jackson P, Piperidis G, McIntyre L. QTL identified for yield components in a cross between a sugarcane (Saccharum spp.) cultivar Q165A and a S. officinarum clone IJ76-514. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, et al., editors. Proceedings for the 4th International Crop Science Congress; 26 September to 1 October 2004; Brisbane, Australia. 2004. New directions for a diverse planet.
    1. Aitken KS, Jackson PA, McIntyre CL. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics. 2005;110:789–801. - PubMed
    1. Alderborn A, Kristofferson A, Hammerling U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Research. 2000;10:1249–1258. - PMC - PubMed

Publication types