Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;9 Suppl 2(Suppl 2):S6.
doi: 10.1186/ar2190.

Therapeutic targets in systemic sclerosis

Affiliations
Review

Therapeutic targets in systemic sclerosis

Christopher P Denton. Arthritis Res Ther. 2007.

Abstract

The precise aetiology of systemic sclerosis (SSc) remains elusive, but significant advances over the past few years have improved our understanding of the underlying pathogenic processes and identified key pathways and mediators that are potential therapeutic targets. The situation is complicated by the clinical heterogeneity of SSc and the differential pathogenesis that underlies the two commonest subsets, namely diffuse and limited cutaneous disease. However, there are common mediators that could be targeted to provide clinical benefit in both types of disease. To date, clinical success with therapies directed against logical profibrotic mediators, such as connective tissue growth factor and transforming growth factor-beta, is yet to be reported, although studies are ongoing. More promising clinical results have been obtained with the dual endothelin receptor antagonist bosentan, which has been shown to manage two vascular complications of SSc effectively: pulmonary arterial hypertension and digital ulceration. It remains to be determined whether the identification of additional mediators merely furthers our knowledge of the natural history of SSc or presents targets that can be manipulated to manage SSc patients effectively.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Cellular interactions in pathogenesis of SSc. The multiple cell types implicated in pathogenesis of SSc are illustrated. Soluble mediators involved in this intercellular cross-talk are candidate targets for therapeutic intervention. bFGF, basic fibroblast growth factor; CTGF, connective tissue growth factor; EC, endothelial cell; ECM, extracellular matrix; ET, endothelin; IFN, interferon; IL, interleukin; MCP, monocyte chemoattractant protein; PDGF, platelet-derived growth factor; SMA, smooth muscle actin; SSc, systemic sclerosis; TGF, transforming growth factor; TH, T-helper (cell); Treg, regulatory T (cell); VEGF, vascular endothelial growth factor. Reproduced with permission from [1].

Similar articles

Cited by

References

    1. Denton CP, Black CM, Abraham DJ. Mechanisms and consequences of fibrosis in systemic sclerosis. Nat Clin Pract Rheumatol. 2006;2:134–144. doi: 10.1038/ncprheum0115. - DOI - PubMed
    1. Dziadzio M, Smith RE, Abraham DJ, Black CM, Denton CP. Circulating levels of active transforming growth factor beta1 are reduced in diffuse cutaneous systemic sclerosis and correlate inversely with the modified Rodnan skin score. Rheumatology (Oxford) 2005;44:1518–1524. doi: 10.1093/rheumatology/kei088. - DOI - PubMed
    1. Renzoni EA, Abraham DJ, Howat S, Shi-Wen X, Sestini P, Bou-Gharios G, Wells AU, Veeraraghavan S, Nicholson AG, Denton CP, et al. Gene expression profiling reveals novel TGFbeta targets in adult lung fibroblasts. Respir Res. 2004;5:24. doi: 10.1186/1465-9921-5-24. - DOI - PMC - PubMed
    1. Denton CP, Zheng B, Evans LA, Shi-wen X, Ong VH, Fisher I, Lazaridis K, Abraham DJ, Black CM, de Crombrugghe B. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor beta (TGFbeta) receptor leads to paradoxical activation of TGFbeta signaling pathways with fibrosis in transgenic mice. J Biol Chem. 2003;278:25109–25119. doi: 10.1074/jbc.M300636200. - DOI - PubMed
    1. Denton CP, Lindahl GE, Khan K, Shiwen X, Ong VH, Gaspar NJ, Lazaridis K, Edwards DR, Leask A, Eastwood M, et al. Activation of key profibrotic mechanisms in transgenic fibroblasts expressing kinase-deficient type II transforming growth factor-β receptor (TβRIIΔk) J Biol Chem. 2005;280:16053–16065. doi: 10.1074/jbc.M413134200. - DOI - PubMed