Diffusible Factors Essential for Epidermal Cell Redifferentiaion in Catharanthus roseus
- PMID: 17769401
- DOI: 10.1126/science.244.4904.580
Diffusible Factors Essential for Epidermal Cell Redifferentiaion in Catharanthus roseus
Abstract
During postgenital tissue fusions, some plant epidermal cells redifferentiate into parenchyma, a different cell type. Diffusible factors cause this response in the fusing gynoecium of the Madagascar periwinkle (Catharanthus roseus). Surgical manipulations of the gynoecium showed that epidermal cells from normally nonfusing surfaces could trasmit and respond to the diffusible factors. Furthermore, the diffusible fators could be trapped in agar-impregnated barriers, as shown by the redifferentiation of carpel epidermal cells from nonfusing regions when the factor-loaded barriers were appressed to them.
Similar articles
-
Morphogenetic factors controlling differentiation and dedifferentiation of epidermal cells in the gynoecium of Catharanthus roseus : II. Diffusible morphogens.Planta. 1986 May;168(1):43-9. doi: 10.1007/BF00407007. Planta. 1986. PMID: 24233733
-
Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle).Biotechnol Appl Biochem. 2009 Apr;52(Pt 4):313-23. doi: 10.1042/BA20080239. Biotechnol Appl Biochem. 2009. PMID: 19281450 Review.
-
Morphogenetic factors controlling differentiation and dedifferentiation of epidermal cells in the gynoecium of Catharanthus roseus : I. The role of pressure and cell confinement.Planta. 1978 Jan;142(2):181-6. doi: 10.1007/BF00388210. Planta. 1978. PMID: 24408100
-
Purification, molecular cloning, and cell-specific gene expression of the alkaloid-accumulation associated protein CrPS in Catharanthus roseus.J Exp Bot. 2005 Apr;56(414):1221-8. doi: 10.1093/jxb/eri116. Epub 2005 Feb 28. J Exp Bot. 2005. PMID: 15737982
-
Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells.Planta Med. 2005 Jun;71(6):572-4. doi: 10.1055/s-2005-864163. Planta Med. 2005. PMID: 15971133
Cited by
-
Primary and secondary plasmodesmata: structure, origin, and functioning.Protoplasma. 2001;216(1-2):1-30. doi: 10.1007/BF02680127. Protoplasma. 2001. PMID: 11732191 Review.
-
Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls.Plant Physiol. 2002 May;129(1):201-10. doi: 10.1104/pp.010886. Plant Physiol. 2002. PMID: 12011351 Free PMC article.
-
Carpeloidy in flower evolution and diversification: a comparative study in Carica papaya and Arabidopsis thaliana.Ann Bot. 2011 Jun;107(9):1453-63. doi: 10.1093/aob/mcr087. Epub 2011 Apr 18. Ann Bot. 2011. PMID: 21504912 Free PMC article.
-
Soluble Signals from Cells Identified at the Cell Wall Establish a Developmental Pathway in Carrot.Plant Cell. 1997 Dec;9(12):2225-2241. doi: 10.1105/tpc.9.12.2225. Plant Cell. 1997. PMID: 12237357 Free PMC article.
-
Clausa, a tomato mutant with a wide range of phenotypic perturbations, displays a cell type-dependent expression of the homeobox gene LeT6/TKn2.Plant Physiol. 2000 Oct;124(2):541-52. doi: 10.1104/pp.124.2.541. Plant Physiol. 2000. PMID: 11027705 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources