Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr 22;240(4851):440-7.
doi: 10.1126/science.240.4851.440.

Intramolecular long-distance electron transfer in organic molecules

Intramolecular long-distance electron transfer in organic molecules

G L Closs et al. Science. .

Abstract

Intramolecular long-distance electron transfer (EI) has been actively studied in recent years in order to test existing theories in a quantitative way and to provide the necessary constants for predicting ET rates from simple structural parameters. Theoretical predictions of an "inverted region," where increasing the driving force of the reaction will decrease its rate, have begun to be experimentally confirmed. A predicted nonlinear dependence of ET rates on the polarity of the solvent has also been confirmed. This work has implications for the design of efficient photochemical charge-separation devices. Other studies have been directed toward determining the distance dependence of ET reactions. Model studies on different series of compounds give similar distance dependences. When different stereochemical structures are compared, it becomes apparent that geometrical factors must be taken into account. Finally, the mechanism of coupling between donor and acceptor in weakly interacting systems has become of major importance. The theoretical and experimental evidence favors a model in which coupling is provided by the interaction with the orbitals of the intervening molecular fragments, although more experimental evidence is needed.

PubMed Disclaimer

LinkOut - more resources