Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 2;46(39):11177-84.
doi: 10.1021/bi700862u. Epub 2007 Sep 5.

Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding

Affiliations

Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding

Ilya Belevich et al. Biochemistry. .

Abstract

Cytochrome bd from Azotobacter vinelandii is a respiratory quinol oxidase that is highly efficient in reducing intracellular oxygen concentration, thus enabling nitrogen fixation under ambient aerobic conditions. Equilibrium measurements of O2 binding to ferrous heme d in the one-electron-reduced form of the A. vinelandii enzyme give Kd(O2) = 0.5 microM, close to the value for the Escherichia coli cytochrome bd (ca. 0.3 microM); thus, both enzymes have similar, high affinity for oxygen. The reaction of the A. vinelandii cytochrome bd in the one-electron-reduced and fully reduced states with O2 is extremely fast approaching the diffusion-controlled limit in water. In the fully reduced state, the rate of O2 binding depends linearly on the oxygen concentration consistently with a simple, single-step process. In contrast, in the one-electron-reduced state the rate of oxygen binding is hyperbolic, implying a more complex binding pattern. Two possible explanations for the saturation kinetics are considered: (A) There is a spectroscopically silent prebinding of oxygen to an unidentified low-affinity saturatable site followed by the oxygen transfer to heme d. (B) Oxygen binding to heme d requires an "activated" state of the enzyme in which an oxygen channel connecting heme d to the bulk is open. This channel is permanently open in the fully reduced enzyme (hence no saturation behavior) but flickers between the open and closed states in the one-electron-reduced enzyme.

PubMed Disclaimer

Publication types

LinkOut - more resources