Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 31;3(8):e122.
doi: 10.1371/journal.ppat.0030122.

Limits on replenishment of the resting CD4+ T cell reservoir for HIV in patients on HAART

Affiliations

Limits on replenishment of the resting CD4+ T cell reservoir for HIV in patients on HAART

Ahmad R Sedaghat et al. PLoS Pathog. .

Abstract

Whereas cells productively infected with human immunodeficiency virus type 1 (HIV-1) decay rapidly in the setting of highly active antiretroviral therapy (HAART), latently infected resting CD4(+) T cells decay very slowly, persisting for the lifetime of the patient and thus forming a stable reservoir for HIV-1. It has been suggested that the stability of the latent reservoir is due to low-level viral replication that continuously replenishes the reservoir despite HAART. Here, we offer the first quantitative study to our knowledge of inflow of newly infected cells into the latent reservoir due to viral replication in the setting of HAART. We make use of a previous observation that in some patients on HAART, the residual viremia is dominated by a predominant plasma clone (PPC) of HIV-1 not found in the latent reservoir. The unique sequence of the PPC serves as a functional label for new entries into the reservoir. We employ a simple mathematical model for the dynamics of the latent reservoir to constrain the inflow rate to between 0 and as few as 70 cells per day. The magnitude of the maximum daily inflow rate is small compared to the size of the latent reservoir, and therefore any inflow that occurs in patients on HAART is unlikely to significantly influence the decay rate of the reservoir. These results suggest that the stability of the latent reservoir is unlikely to arise from ongoing replication during HAART. Thus, intensification of standard HAART regimens should have minimal effects on the decay of the latent reservoir.

PubMed Disclaimer

Conflict of interest statement

Competing interests. The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. PPCs Show Limited Entry into Resting CD4+ T Cells of Patients on HAART
(A and B) Results are shown for two patients, pt. 148 (A) and pt. 154 (B). The heterogeneity of the latent reservoir in comparison to the homogeneity of the plasma virus in these patients is represented with pie charts in which distinct genotypes are indicated in different colors. The PPC for each patient is shown in red. Intensive sampling of the plasma virus was carried out by sampling three times per week over a 3- to 4-mo period as indicated by the thin vertical marks on the time line. For pt. 154, additional samples of plasma virus (small circles) were obtained before and on several occasions after the period of intensive sampling. These document the persistence of the PPC for a minimum of approximately 900 d. Sampling of proviruses in resting CD4+ T cells was carried out before and on multiple occasions after the period of intensive plasma sampling. With one exception (*), all of the cellular sequences remained distinct from the PPC. The numbers below each circle represent the number of independent sequences analyzed. For pt. 154, the plasma samples after study day 900 were analyzed by RT-PCR of the env gene. Previously, linkage studies [45] allowed us to identify the PPC in the env sequences. Phylogenetic analysis of these sequences is described in detail elsewhere [45].
Figure 2
Figure 2. Dynamics of the Latent Reservoir (Black) L for the Three Described Regimes with Respect to the Steady State of L (Red) and a Purely Exponential Decay Defined by (Blue)
(A) Regime 1; koutL(t) ≫ kin. (B) Regime 2; koutL(t) = kin. (C) Regime 3; koutL(t) ≈ kin and koutL(t) > kin.

References

    1. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387:183–188. - PubMed
    1. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278:1295–1300. - PubMed
    1. Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, et al. In vivo fate of HIV-1-infected T cells: Quantitative analysis of the transition to stable latency. Nat Med. 1995;1:1284–1290. - PubMed
    1. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94:13193–13197. - PMC - PubMed
    1. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278:1291–1295. - PubMed

Publication types

MeSH terms

Substances