Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 6;55(5):768-78.
doi: 10.1016/j.neuron.2007.07.036.

alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits

Affiliations
Free article

alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits

Asim A Beg et al. Neuron. .
Free article

Abstract

The assembly of neuronal networks during development requires tightly controlled cell-cell interactions. Multiple cell surface receptors that control axon guidance and synapse maturation have been identified. However, the signaling mechanisms downstream of these receptors have remained unclear. Receptor signals might be transmitted through dedicated signaling lines defined by specific effector proteins. Alternatively, a single cell surface receptor might couple to multiple effectors with overlapping functions. We identified the neuronal RacGAP alpha2-chimaerin as an effector for the receptor tyrosine kinase EphA4. alpha2-Chimaerin interacts with activated EphA4 and is required for ephrin-induced growth cone collapse in cortical neurons. alpha2-Chimaerin mutant mice exhibit a rabbit-like hopping gait with synchronous hindlimb movements that phenocopies mice lacking EphA4 kinase activity. Anatomical and functional analyses of corticospinal and spinal interneuron projections reveal that loss of alpha2-chimaerin results in impairment of EphA4 signaling in vivo. These findings identify alpha2-chimaerin as an indispensable effector for EphA4 in cortical and spinal motor circuits.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms