Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar;86(13 Suppl):57-65.
doi: 10.2527/jas.2007-0302. Epub 2007 Sep 4.

Mammary tissue damage during bovine mastitis: causes and control

Affiliations
Review

Mammary tissue damage during bovine mastitis: causes and control

X Zhao et al. J Anim Sci. 2008 Mar.

Abstract

Mastitis, an inflammatory reaction of the mammary gland that is usually caused by a microbial infection, is recognized as the most costly disease in dairy cattle. Decreased milk production accounts for approximately 70% of the total cost of mastitis. Mammary tissue damage reduces the number and activity of epithelial cells and consequently contributes to decreased milk production. Mammary tissue damage has been shown to be induced by either apoptosis or necrosis. These 2 distinct types of cell death can be distinguished by morphological, biochemical, and molecular changes in dying cells. Both bacterial factors and host immune reactions contribute to epithelial tissue damage. During infection of the mammary glands, the tissue damage can initially be caused by bacteria and their products. Certain bacteria produce toxins that destroy cell membranes and damage milk-producing tissue, whereas other bacteria are able to invade and multiply within the bovine mammary epithelial cells before causing cell death. In addition, mastitis is characterized by an influx of somatic cells, primarily polymorphonuclear neutrophils, into the mammary gland. With more immune cells migrating into the mammary gland and the breakdown of the blood-milk barrier, damage to the mammary epithelium worsens. It is well known that breakdown of the extracellular matrix can lead to death of the epithelial cells. Meanwhile, polymorphonuclear neutrophils can harm the mammary tissue by releasing reactive oxygen intermediates and proteolytic enzymes. In vitro and in vivo studies suggest that the use of antioxidants and other protective compounds in mastitis control programs is worth investigating, because they may aid in alleviating damage to secretory cells and thus reduce subsequent milk loss.

PubMed Disclaimer

MeSH terms

LinkOut - more resources