Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;81(1):32-40.
doi: 10.1159/000107792. Epub 2007 Sep 4.

Lidocaine attenuates lipopolysaccharide-induced acute lung injury through inhibiting NF-kappaB activation

Affiliations

Lidocaine attenuates lipopolysaccharide-induced acute lung injury through inhibiting NF-kappaB activation

Guang Feng et al. Pharmacology. 2008.

Abstract

Background and objectives: Lidocaine has been reported to attenuate the inflammatory response in addition to its anesthetic activity, but the mechanisms are poorly understood. The objective of this study is to determine if lidocaine prior to endotoxemia diminishes pulmonary dysfunction by blocking the NF-kappaB activation.

Methods: Rats were assigned to: (1) control (0.9% sodium chloride); (2) lipopolysaccharides (LPS); (3) LPS + lidocaine 1 mg/kg; (4) LPS + lidocaine 2 mg/kg, and (5) LPS + lidocaine 4 mg/kg. The LPS and LPS + lidocaine 4 mg/kg groups were subjected to 1-, 3-, 6- and 12-hour time points. To investigate the activation of NF-kappaB, the expression of NF-kappaB in the nuclear and I kappaB alpha in the cytosol extracts were analyzed by Western blot. The concentration of TNF-alpha and IL-6 in serum was detected by ELISA. The pathologic changes of the lung were observed using HE staining.

Results: After i.p. injection of LPS, the expression of NF-kappaB in the nuclear extracts was significantly increased and I kappaB alpha in the cytosol extracts was markedly decreased. The concentration of TNF-alpha and IL-6 in serum was increased. Pathological examination showed that the normal structure of the lung was destroyed badly. However, lidocaine reversed the above results.

Conclusion: Lidocaine attenuates LPS-induced lung injury via mechanisms involving inhibiting NF-kappaB activation and cytokine release, which implies that lidocaine may be a potential anti-inflammatory agent in endotoxemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources