Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;71(6):2114-21.
doi: 10.1152/jappl.1991.71.6.2114.

Skeletal muscle changes after endurance training at high altitude

Affiliations

Skeletal muscle changes after endurance training at high altitude

A X Bigard et al. J Appl Physiol (1985). 1991 Dec.

Abstract

The effects of endurance training on the skeletal muscle of rats have been studied at sea level and simulated high altitude (4,000 m). Male Wistar rats were randomly assigned to one of four groups: exercise at sea level, exercise at simulated high altitude, sedentary at sea level, and sedentary at high altitude (n = 8 in each group). Training consisted of swimming for 1 h/day in water at 36 degrees C for 14 wk. Training and exposure to a high-altitude environment produced a decrease in body weight (P less than 0.001). There was a significant linear correlation between muscle mass and body weight in the animals of all groups (r = 0.89, P less than 0.001). High-altitude training enhanced the percentage of type IIa fibers in the extensor digitorum longus muscle (EDL, P less than 0.05) and deep portions of the plantaris muscle (dPLA, P less than 0.01). High-altitude training also increased the percentage of type IIab fibers in fast-twitch muscles. These muscles showed marked metabolic adaptations: training increased the activity levels of enzymes involved in the citric acid cycle (citrate synthase, CS) and the beta-oxidation of fatty acids (3 hydroxyacyl CoA dehydrogenase, HAD). This increase occurred mainly at high altitude (36 and 31% for HAD in EDL and PLA muscles; 24 and 31% for CS in EDL and PLA muscles). Training increased the activity of enzymes involved in glucose phosphorylation (hexokinase). High-altitude training decreased lactate dehydrogenase activity. Endurance training performed at high altitude and sea level increased the isozyme 1-to-total lactate dehydrogenase activity ratio to the same extent.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources