Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2007 Sep;47(21):2778-85.
doi: 10.1016/j.visres.2007.07.008. Epub 2007 Sep 4.

Stereopsis-dependent deficits in maximum motion displacement in strabismic and anisometropic amblyopia

Affiliations
Free article
Randomized Controlled Trial

Stereopsis-dependent deficits in maximum motion displacement in strabismic and anisometropic amblyopia

Cindy S Ho et al. Vision Res. 2007 Sep.
Free article

Abstract

Direction discrimination thresholds for maximum motion displacement (D(max)) have been previously reported to be abnormal in amblyopic children [Ho, C. S., Giaschi, D. E., Boden, C., Dougherty, R., Cline, R., & Lyons, C. (2005). Deficient motion perception in the fellow eye of amblyopic children. Vision Research, 45, 1615-1627; Ho, C. S., & Giaschi, D. E. (2006). Deficient maximum motion displacement in amblyopia. Vision Research, 46, 4595-4603]. We looked at D(max) thresholds for random dot kinematograms (RDKs) biased toward low- or high-level motion mechanisms. D(max) is thought to be limited, for high-level motion mechanisms, by the efficiency of object feature tracking and probability of false matches. To reduce the influence of low-level mechanisms, we determined thresholds also for a high-pass filtered version of the RDKs. Performance did not significantly differ between strabismic and anisometropic groups with amblyopia, although both groups performed significantly worse than the age-matched control group. D(max) thresholds were higher for children with poor stereoacuity. This was significant in both anisometropic and strabismic groups, and more robust for high-pass filtered RDKs than for unfiltered RDKs. The results imply that impairment of the extra-striate dorsal stream is a likely part of the neural deficit underlying both strabismic and anisometropic amblyopia. This deficit appears to be more dependent on extent of binocularity than etiology. Our findings suggest a possible relationship between fine stereopsis, coarse stereopsis, and motion correspondence mechanisms.

PubMed Disclaimer

Publication types

LinkOut - more resources