Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;10(2):107-13.
doi: 10.3109/08916939109004814.

Interleukin-1 beta induces an early decrease in insulin release, (pro)insulin biosynthesis and insulin mRNA in mouse pancreatic islets by a mechanism dependent on gene transcription and protein synthesis

Affiliations
Free article

Interleukin-1 beta induces an early decrease in insulin release, (pro)insulin biosynthesis and insulin mRNA in mouse pancreatic islets by a mechanism dependent on gene transcription and protein synthesis

D L Eizirik. Autoimmunity. 1991.
Free article

Abstract

In an attempt to further characterize the mechanisms of action of recombinant interleukin-1 beta (rIL-1 beta) on mouse pancreatic islets, islets were exposed for different periods of time (6, 12 and 24 h) to 50 U/ml rIL-1 beta. After 6 h there was already a significant decrease in glucose (16.7 mM)-induced insulin release. This was followed at 12 h by a decrease in insulin mRNA contents and (pro)insulin biosynthesis and, after 24 h, by a decrease in islet insulin contents. There was no decrease in total protein biosynthesis or DNA contents in any of the studied time points and the glucose oxidation rates were not affected by rIL-1 beta after 12 h of exposure. A similar inhibition of insulin release, (pro)insulin biosynthesis and insulin mRNA content was observed 12 h after a short (2 h) exposure of the islets to rIL-beta, suggesting that a brief exposure of mouse islets to the cytokine can modify their function for several hours. When islets were exposed for 12 h to 50 U/ml rIL-1 beta in the presence of either an inhibitor of gene transcription (actinomycin D) or an inhibitor of mRNA translation (cycloheximide) there was a complete protection against the suppressive effects of rIL-1 beta on insulin release, (pro)insulin biosynthesis and insulin mRNA contents. However, when islets were exposed for 2 h to rIL-1 beta in the presence of actinomycin D, and studied 12 h later, actinomycin counteracted the inhibitory effects of rIL-1 beta on insulin release, but not on (pro)insulin biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources