Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec;16(12):1275-83.
doi: 10.1007/BF00966658.

Effects of potassium on the anion and cation contents of primary cultures of mouse astrocytes and neurons

Affiliations

Effects of potassium on the anion and cation contents of primary cultures of mouse astrocytes and neurons

S Y Chow et al. Neurochem Res. 1991 Dec.

Abstract

In astrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl-]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl-]i and a decrease in [Na+]i were observed. In neurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl-]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl-]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl-]i were increased, whereas [Na+]i was decreased. In astrocytes, pHi increased when [K+]o was increased. In neurons, there was a biphasic change in pHi. In lower [K+]o (1.2-2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8-122 mM) pHi was directly related to [K+]o. In both astrocytes and neurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurophysiol. 1966 Jul;29(4):788-806 - PubMed
    1. Neurobiology. 1972;2(3):97-105 - PubMed
    1. J Pharmacol Exp Ther. 1983 Apr;225(1):17-23 - PubMed
    1. Brain Res. 1978 Apr 21;145(1):202-8 - PubMed
    1. J Physiol. 1990 Jan;420:325-36 - PubMed

Publication types

MeSH terms

LinkOut - more resources