Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;21(3):277-87.
doi: 10.1007/s10534-007-9117-4. Epub 2007 Sep 12.

A possible role for intracellular GSH in spontaneous reaction of a cysteine (T338C) engineered into the Cystic Fibrosis Transmembrane Conductance Regulator

Affiliations

A possible role for intracellular GSH in spontaneous reaction of a cysteine (T338C) engineered into the Cystic Fibrosis Transmembrane Conductance Regulator

Xuehong Liu. Biometals. 2008 Jun.

Abstract

The conductance of oocytes expressing T338C CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) exhibits variable responses to dithiothreitol (DTT) and 2-mercaptoethanol (2-ME) that we proposed might be due to the extraction of copper from an adventitious binding site (Liu et al. J Biol Chem 281(12):8275-8285, 2006). In order to study the origins of variability in chemical reactivity of T338C CFTR channels, oocytes expressing T338C CFTR were exposed to BCNU (bischloroethylnitrosourea), an inhibitor of glutathione reductase. BCNU treatment caused a significant reduction of initial conductance and an increase in the response to 2-ME or DTT, suggesting a direct or indirect influence of intracellular glutathione (GSH), a major determinant of the disposition of intracellular copper. Single-channel recordings indicated that T338C CFTR channels not exposed to 2-ME or DTT exhibited multiple conductance levels not seen in T338A CFTR channels. Exposure to BCNU shifted the distribution of single-channel current amplitudes towards lower values, whereas exposure to DTT favored higher amplitudes. These results suggest that the altered chemical state of T338C channels is associated with a decreased single-channel conductance and that intracellular factors (most likely GSH) may modulate the propensity of the channel to form these altered states.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources