Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Sep;7(18):3289-98.
doi: 10.1002/pmic.200700124.

Comparative proteomic analysis of myotube caveolae after milli-calpain deregulation

Affiliations
Comparative Study

Comparative proteomic analysis of myotube caveolae after milli-calpain deregulation

Sébastien Goudenege et al. Proteomics. 2007 Sep.

Abstract

Caveolae are specialised RAFTs (detergent-resistant membrane microdomains enriched in cholesterol and glycosphingolipids). Caveolin, the main caveolae protein, is essential to the organisation of proteins and lipids, and interacts with numerous mediating proteins through a 'Caveolin Scalfolding Domain'. Consequently, caveolae play a major role in signal transduction and appear to be veritable signalling platforms. In muscle cells, caveolae are essential for fusion and differentiation, and are also implicated in a type of muscular dystrophy (LGMD1C). In a preceding work, we demonstrated the presence of active milli-calpain (m-calpain) in myotube caveolae. Calpains are calcium-dependent proteases involved in several cellular processes, including myoblast fusion and migration, PKC-mediated intracellular signalling and remodelling of the cytoskeleton. For the first time, we have proved the cholesterol-dependent localisation of m-calpain in the caveolae of C(2)C(12) myotubes. Calpain-dependent caveolae involvement in myoblast fusion was also strongly suggested. Furthermore, eight differentially expressed caveolae associated proteins were identified by 2-DE and LC-MS/MS analyses using an m-calpain antisense strategy. This proteomic study also demonstrates the action of m-calpain on vimentin, desmin and vinculin in myotube caveolae and suggests m-calpain's role in several mitochondrial pathways.

PubMed Disclaimer

Publication types

LinkOut - more resources