Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug;17(4):609-20.
doi: 10.1007/s11248-007-9133-8. Epub 2007 Sep 13.

Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil

Affiliations

Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil

Isik Icoz et al. Transgenic Res. 2008 Aug.

Abstract

The Cry3Bb1 protein, insecticidal to the corn rootworm complex (Diabrotica spp.), of Bacillus thuringiensis (Bt) subsp. kumamotoensis was released in root exudates of transgenic Bt corn (event MON863) in sterile hydroponic culture (7.5 +/- 1.12 ng/ml after 28 days of growth) and in nonsterile soil throughout growth of the plants (2.2 +/- 0.62 ng/g after 63 days of growth). Kitchawan soil, which contains predominantly kaolinite (K) but not montmorillonite (M), was amended to 3 or 6% (vol./vol.) with K (3K and 6K soils) or M (3M and 6M soils) and with 1, 3, 5, or 10% (wt./wt.) of ground biomass of Bt corn expressing the Cry3Bb1 protein and incubated at 25 +/- 2 degrees C at the -33-kPa water tension for 60 days. Soils were analyzed for the presence of the protein every 7 to 10 days with a western blot assay (ImmunoStrip) and verified by ELISA. Persistence of the protein varied with the type and amount of clay mineral and the pH of the soils and increased as the concentration of K was increased but decreased as the concentration of M was increased. Persistence decreased when the pH of the K-amended soils was increased from ca. 5 to ca. 7 with CaCO(3): the protein was not detected after 14 and 21 days in the pH-adjusted 3K and 6K soils, respectively, whereas it was detected after 40 days in the 3K and 6K soils not adjusted to pH 7. The protein was detected for only 21 days in the 3M soil and for 14 days in the 6M soil, which were not adjusted in pH. These results indicate that the Cry3Bb1 protein does not persist or accumulate in soil and is degraded rapidly.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Biotechnol Appl Biochem. 1990 Jun;12(3):245-51 - PubMed
    1. J Environ Qual. 2008 Mar-Apr;37(2):647-62 - PubMed
    1. Mol Ecol. 2003 Mar;12(3):765-75 - PubMed
    1. Appl Environ Microbiol. 1997 Sep;63(9):3561-8 - PubMed

Publication types

LinkOut - more resources