Genetic alterations in glioma and medulloblastoma
- PMID: 1786630
- DOI: 10.1007/BF00554791
Genetic alterations in glioma and medulloblastoma
Abstract
Multiple genetic changes take place during tumor development and progression. These genetic changes result in inactivation of tumor suppressor genes and activation of proto-oncogenes. Frequent genetic changes observed in gliomas are losses of chromosomal regions on 9p, 10q, 13q, 17p and on 22. Loss of 10q is seen in more than 80% of the glioblastoma multiforme (GBM) tumors suggesting the presence of a gene critical for GBM formation on this chromosome. Amplification of epidermal growth factor receptor gene and expression of platelet derived growth factor and fibroblast growth factor genes are also common among gliomas. The most common genetic abnormality found in medulloblastomas is loss of 17p. The C-myc gene is amplified in a few primary tumors, but the incidence of amplification is higher in medulloblastoma derived cell lines. These findings suggest that the same two genetic processes, gene amplification and regional chromosomal loss, which characterize other primitive childhood neuroectodermal tumors such as retinoblastoma and neuroblastoma are also important in medulloblastomas.
Similar articles
-
Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma.Brain Pathol. 1990 Sep;1(1):12-8. doi: 10.1111/j.1750-3639.1990.tb00633.x. Brain Pathol. 1990. PMID: 1669688 Review.
-
Oncogene amplification in pediatric brain tumors.Cancer Res. 1990 May 15;50(10):2987-90. Cancer Res. 1990. PMID: 2334901
-
Oncogenes and anti-oncogenes in human central nervous system tumors.Lab Invest. 1994 Nov;71(5):621-37. Lab Invest. 1994. PMID: 7967518 Review. No abstract available.
-
Epidemiology, cytogenetics, and molecular biology of brain tumors.Curr Opin Oncol. 1993 May;5(3):474-80. doi: 10.1097/00001622-199305000-00006. Curr Opin Oncol. 1993. PMID: 8494908 Review.
-
Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors.J Neurosurg. 1994 Sep;81(3):427-36. doi: 10.3171/jns.1994.81.3.0427. J Neurosurg. 1994. PMID: 8057151
Cited by
-
Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas.Mol Cell Biol. 1995 Aug;15(8):4249-59. doi: 10.1128/MCB.15.8.4249. Mol Cell Biol. 1995. PMID: 7623819 Free PMC article.
-
Low-level copy number changes of MYC genes have a prognostic impact in medulloblastoma.J Neurooncol. 2011 Mar;102(1):25-33. doi: 10.1007/s11060-010-0289-3. Epub 2010 Jul 8. J Neurooncol. 2011. PMID: 20607354
-
Growth inhibition by the tumor suppressor p33ING1 in immortalized and primary cells: involvement of two silencing domains and effect of Ras.Mol Cell Biol. 2005 Jan;25(1):422-31. doi: 10.1128/MCB.25.1.422-431.2005. Mol Cell Biol. 2005. PMID: 15601862 Free PMC article.
-
Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy.J Neurooncol. 1994;19(3):259-68. doi: 10.1007/BF01053280. J Neurooncol. 1994. PMID: 7807177
-
WT1 expression distinguishes astrocytic tumor cells from normal and reactive astrocytes.Brain Pathol. 2008 Jul;18(3):344-53. doi: 10.1111/j.1750-3639.2008.00127.x. Epub 2008 Mar 26. Brain Pathol. 2008. PMID: 18371184 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Medical
Research Materials