Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 16;25(42):7372-8.
doi: 10.1016/j.vaccine.2007.08.014. Epub 2007 Aug 28.

The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines

Affiliations

The absence of enhanced disease with wild type respiratory syncytial virus infection occurring after receipt of live, attenuated, respiratory syncytial virus vaccines

Peter F Wright et al. Vaccine. .

Abstract

Early in the development of respiratory syncytial virus (RSV) vaccines severe disease occurred in children after receipt of formalin-inactivated RSV vaccine. Continuing efforts to develop an appropriately attenuated and immunogenic live RSV vaccine have given opportunities to assure that live vaccines are safe through surveillance of children after vaccination. In the present study, the rate of RSV-associated upper respiratory tract illness in 388 children was lower in RSV vaccinated children than in controls (14% versus 20% in a 6-24 month old group and 16% versus 25% in infants). Additionally, there was no evidence that vaccination predisposed to more severe lower respiratory tract illness. Thus infection with a series of live attenuated RSV vaccines did not result in enhanced disease upon infection with wild type RSV. The impact of RSV during this surveillance will inform the design of future efficacy studies with RSV vaccines.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Karron RA, Wright PF, Belshe RB, Thumar B, Casey R, Newman F, et al. Identification of a recombinant live attenuated respiratory syncytial virus vaccine candidate that is highly attenuated in infants. J Infect Dis. 2005;191(7):1093–104. - PubMed
    1. Karron RA, Wright PF, Crowe JE, Jr, Clements-Mann ML, Thompson J, Makhene M, et al. Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees and in human adults, infants, and children. J Infect Dis. 1997;176(6):1428–36. - PubMed
    1. Wright PF, Karron RA, Belshe RB, Thompson J, Crowe JE, Jr, Boyce TG, et al. Evaluation of a live, cold-passaged, temperature-sensitive, respiratory syncytial virus vaccine candidate in infancy. J Infect Dis. 2000;182(5):1331–42. - PubMed
    1. Wright PF, Karron RA, Madhi SA, Treanor JJ, King JC, O’Shea A, et al. The interferon antagonist NS2 protein of respiratory syncytial virus is an important virulence determinant for humans. J Infect Dis. 2006;193(4):573–81. - PubMed
    1. Chin J, Magoffin RL, Shearer LA, Schieble JH, Lennette EH. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am J Epidemiol. 1969;89(4):449–63. - PubMed

Publication types

MeSH terms

Substances