Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov 1;23(21):2888-96.
doi: 10.1093/bioinformatics/btm463. Epub 2007 Sep 14.

Graph-based consensus clustering for class discovery from gene expression data

Affiliations

Graph-based consensus clustering for class discovery from gene expression data

Zhiwen Yu et al. Bioinformatics. .

Abstract

Motivation: Consensus clustering, also known as cluster ensemble, is one of the important techniques for microarray data analysis, and is particularly useful for class discovery from microarray data. Compared with traditional clustering algorithms, consensus clustering approaches have the ability to integrate multiple partitions from different cluster solutions to improve the robustness, stability, scalability and parallelization of the clustering algorithms. By consensus clustering, one can discover the underlying classes of the samples in gene expression data.

Results: In addition to exploring a graph-based consensus clustering (GCC) algorithm to estimate the underlying classes of the samples in microarray data, we also design a new validation index to determine the number of classes in microarray data. To our knowledge, this is the first time in which GCC is applied to class discovery for microarray data. Given a pre specified maximum number of classes (denoted as K(max) in this article), our algorithm can discover the true number of classes for the samples in microarray data according to a new cluster validation index called the Modified Rand Index. Experiments on gene expression data indicate that our new algorithm can (i) outperform most of the existing algorithms, (ii) identify the number of classes correctly in real cancer datasets, and (iii) discover the classes of samples with biological meaning.

Availability: Matlab source code for the GCC algorithm is available upon request from Zhiwen Yu.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources