Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli
- PMID: 17873044
- PMCID: PMC2168661
- DOI: 10.1128/JB.01027-07
Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli
Abstract
Although NAD(+)-dependent succinate semialdehyde dehydrogenase activity was first described in Escherichia coli more than 25 years ago, the responsible gene has remained elusive so far. As an experimental proof of concept for a gap-filling algorithm for metabolic networks developed earlier, we demonstrate here that the E. coli gene yneI is responsible for this activity. Our biochemical results demonstrate that the yneI-encoded succinate semialdehyde dehydrogenase can use either NAD(+) or NADP(+) to oxidize succinate semialdehyde to succinate. The gene is induced by succinate semialdehyde, and expression data indicate that yneI plays a unique physiological role in the general nitrogen metabolism of E. coli. In particular, we demonstrate using mutant growth experiments that the yneI gene has an important, but not essential, role during growth on arginine and probably has an essential function during growth on putrescine as the nitrogen source. The NADP(+)-dependent succinate semialdehyde dehydrogenase activity encoded by the functional homolog gabD appears to be important for nitrogen metabolism under N limitation conditions. The yneI-encoded activity, in contrast, functions primarily as a valve to prevent toxic accumulation of succinate semialdehyde. Analysis of available genome sequences demonstrated that orthologs of both yneI and gabD are broadly distributed across phylogenetic space.
Figures






Similar articles
-
A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12.J Bacteriol. 2010 Sep;192(18):4582-91. doi: 10.1128/JB.00308-10. Epub 2010 Jul 16. J Bacteriol. 2010. PMID: 20639325 Free PMC article.
-
Structure and activity of the NAD(P)+-dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium.Proteins. 2013 Jun;81(6):1031-41. doi: 10.1002/prot.24227. Epub 2013 Apr 1. Proteins. 2013. PMID: 23229889
-
An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase.Arch Microbiol. 1982 Sep;132(3):270-5. doi: 10.1007/BF00407964. Arch Microbiol. 1982. PMID: 6756331
-
Separation and characterization of NAD- and NADP-specific succinate-semialdehyde dehydrogenase from Escherichia coli K-12 3300.Biochim Biophys Acta. 1980 Jun 13;613(2):309-17. doi: 10.1016/0005-2744(80)90085-6. Biochim Biophys Acta. 1980. PMID: 7004491
-
[Succinic semialdehyde dehydrogenase deficiency: an inheritable neurometabolic disease].Fortschr Neurol Psychiatr. 2013 Mar;81(3):154-61. doi: 10.1055/s-0032-1330544. Epub 2013 Mar 20. Fortschr Neurol Psychiatr. 2013. PMID: 23516105 Review. German.
Cited by
-
A crucial active site network of titratable residues guides catalysis and NAD+ binding in human succinic semialdehyde dehydrogenase.Protein Sci. 2025 Jan;34(1):e70024. doi: 10.1002/pro.70024. Protein Sci. 2025. PMID: 39731543 Free PMC article.
-
Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli.Mol Syst Biol. 2013;9:661. doi: 10.1038/msb.2013.18. Mol Syst Biol. 2013. PMID: 23632383 Free PMC article. Review.
-
Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli.J Bacteriol. 2012 Aug;194(15):4080-8. doi: 10.1128/JB.05063-11. Epub 2012 May 25. J Bacteriol. 2012. PMID: 22636776 Free PMC article.
-
Metabolite damage and its repair or pre-emption.Nat Chem Biol. 2013 Feb;9(2):72-80. doi: 10.1038/nchembio.1141. Nat Chem Biol. 2013. PMID: 23334546 Review.
-
Deletion of succinic semialdehyde dehydrogenase sad and chromosomal expression of phosphoenolpyruvate carboxylase as metabolic requirements for improved production of 2,4-dihydroxybutyric acid via malyl-P pathway using E. coli.Front Bioeng Biotechnol. 2025 May 12;13:1589489. doi: 10.3389/fbioe.2025.1589489. eCollection 2025. Front Bioeng Biotechnol. 2025. PMID: 40421117 Free PMC article.
References
-
- Andrade, M. A., N. P. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich, A. Franchini, J. Tamames, A. Valencia, C. Ouzounis, and C. Sander. 1999. Automated genome sequence analysis and annotation. Bioinformatics 15:391-412. - PubMed
-
- Ball, C. A., I. A. Awad, J. Demeter, J. Gollub, J. M. Hebert, T. Hernandez-Boussard, H. Jin, J. C. Matese, M. Nitzberg, F. Wymore, Z. K. Zachariah, P. O. Brown, and G. Sherlock. 2005. The Stanford Microarray Database accommodates additional microarray platforms and data formats. Nucleic Acids Res. 33:D580—D582. - PMC - PubMed
-
- Bork, P., L. J. Jensen, C. von Mering, A. K. Ramani, I. Lee, and E. M. Marcotte. 2004. Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. 14:292-299. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous