Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jun;3(2):147-56.
doi: 10.1007/s12015-007-0019-1.

Stem cells and the stem cell niche in the breast: an integrated hormonal and developmental perspective

Affiliations
Review

Stem cells and the stem cell niche in the breast: an integrated hormonal and developmental perspective

Cathrin Brisken et al. Stem Cell Rev. 2007 Jun.

Abstract

The mammary gland is a unique organ in that it undergoes most of its development after birth under the control of systemic hormones. Whereas in most other organs stem cells divide in response to local stimuli, to replace lost cells, in the mammary gland large numbers of cells need to be generated at specific times during puberty, estrous cycles and pregnancy to generate new tissue structures. This puts special demands on the mammary stem cells and requires coordination of local events with systemic needs. Our aim is to understand how the female reproductive hormones control mammary gland development and influence tumorigenesis. We have shown that steroid hormones act in a paracrine fashion in the mammary gland delegating different functions to locally produced factors. These in turn, affect cell-cell interactions that result in changes of cell behavior required for morphogenesis and differentiation. Here, we discuss how these hormonally regulated paracrine interactions may impinge on stem cells and the stem cell niche and how this integration of signals adds extra levels of complexity to current mammary stem cell models. We propose a model whereby the stem cell niches change depending on the developmental stages and the hormonal milieu. According to this model, repeated hormone stimulation of stem cells and their niches in the course of menstrual cycles may be an important early event in breast carcinogenesis and may explain the conundrum why breast cancer risk increases with the number of menstrual cycles experienced prior to a first pregnancy.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2196-201 - PubMed
    1. Development. 2002 Jan;129(1):53-60 - PubMed
    1. J Natl Cancer Inst. 2006 Jul 19;98(14):1011-4 - PubMed
    1. Trends Cell Biol. 2005 Sep;15(9):494-501 - PubMed
    1. Breast Cancer Res. 2004;6(6):R605-15 - PubMed

MeSH terms

Substances

LinkOut - more resources