Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Practice Guideline
. 2007 Sep;9(9):650-3.
doi: 10.1097/gim.0b013e31814cec3a.

Use of array-based technology in the practice of medical genetics

Affiliations
Practice Guideline

Use of array-based technology in the practice of medical genetics

Melanie Manning et al. Genet Med. 2007 Sep.

Abstract

Mental retardation affects approximately 3% of the population, and the background birth defect rate is 3% to 4%. An underlying cause is identified less than 50% of the time. In the cases in which a cause is determined, a chromosomal anomaly is the cause in up to 40%. Laboratory evaluation routinely includes high-resolution karyotyping, subtelomeric fluorescence in situ hybridization analysis, and targeted fluorescence in situ hybridization analysis depending on the clinical features. There are technical limitations to these techniques, however. For example, anomalies less than 2 to 3 Mb in size are undetectable by karyotype, and subtelomeric fluorescence in situ hybridization analysis is a labor-intensive analysis with a relatively low yield. With completion of the Human Genome Project, diagnostic testing is moving toward the use of DNA-based techniques such as comparative genomic hybridization microarray analysis or array comparative genomic hybridization. Although this technology has been used in the evaluation of tumors and cancer patients in the past, it is now being applied in the assessment of patients demonstrating idiopathic mental retardation or developmental delay, dysmorphic features, congenital anomalies, and spontaneous abortions. As with other well-developed cytogenetic studies, there are technical limitations to array comparative genomic hybridization that must be acknowledged and addressed before its widespread use. A variety of array-based technologies are now available on a clinical basis. We discuss the utility and limitations of using this technology in the evaluation of individuals with mental retardation and malformations, citing the existing literature.

PubMed Disclaimer

Publication types

MeSH terms