Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May 24;12(5):1125-35.
doi: 10.3390/12051125.

Synthesis of sulfonamides and evaluation of their histone deacetylase (HDAC) activity

Affiliations

Synthesis of sulfonamides and evaluation of their histone deacetylase (HDAC) activity

Seikwan Oh et al. Molecules. .

Erratum in

  • Molecules. 2009;14(5):1950-1. Avery, Mitchell A [added]

Abstract

A simple synthesis of sulfonamides 4-22 as novel histone deacetylase (HDAC) inhibitors is described. The key synthetic strategies involve N-sulfonylation of L-proline benzyl ester hydrochloride (2) and coupling reaction of N-sulfonyl chloride 3 with amines in high yields. It was found that several compounds showed good cellular potency with the most potent compound 20 exhibiting an IC50 = 2.8 microM in vitro.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Synthesis of sulfonamides 47.
Scheme 2
Scheme 2
Synthesis of PMB amine 10.
Scheme 3
Scheme 3
Synthesis of sulfonamides 1122.

Similar articles

Cited by

References

    1. Vigushin D. M., Coombes R. C. Histone deacetylase inhibitors in cancer treatment. Anti–Cancer Drugs. 2002;13:1–13. Vigushin D. M., Coombes R. C. Targeted histone deacetylase inhibition for cancer therapy. Curr. Cancer Drug Targ. 2004;4:205–218.

    1. Mai A., Massa S., Rotili D., Cerbara I., Valente S., Pezzi R., Simeoni S., Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med. Res. Rev. 2005;25:261–309. Dangond F., Henriksson M., Zardo G., Caiafa P., Ekstrom T. J., Gray S. G. Differential expression of class I HDACs: roles of cell density and cell cycle. Int. J. Oncol. 2001;19:773–777.

    1. Imre G., Gekeler V., Leja A., Beckers T., Boehm M. Histone deacetylase inhibitors suppress the inducibility of nuclear factor-kappaB by tumor necrosis factor-alpha receptor-1 down-regulation. Cancer Res. 2006;66:5409–5418. O'Connor O. A., Heaney M. L., Schwartz L., Richardson S., Willim R., MacGregor–Cortelli B., Curly T., Moskowitz C., Portlock C., Horwitz S., Zelenetz A. D., Frankel S., Richon V., Marks P., Kelly W. K. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol. 2006;24:166–173. Mayo M. W., Denlinger C. E., Broad R. M., Yeung F., Reilly E. T., Shi Y., Jones D. R. Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J. Biol. Chem. 2003;278:18980–18989.

    1. Suzuki T., Nagano Y., Kouketsu A., Matsuura A., Maruyama S., Kurotaki M., Nakagawa H., Miyata N. Novel inhibitors of human histone deacetylases: design, synthesis, enzyme inhibition, and cancer cell growth inhibition of SAHA-based non-hydroxamates. J. Med. Chem. 2005;48:1019–1032. Bouchain G., Delorme D. Novel hydroxamate and anilide derivatives as potent histone deacetylase inhibitors: synthesis and antiproliferative evaluation. Curr. Med. Chem. 2003;10:2359–2372. Shinji C., Maeda S., Imai K., Yoshida M., Hashimoto Y., Miyachi H. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. 2006;14:7625–7651. Kim H. M., Lee K., Park B. W., Ryu D. K., Kim K., Lee C. W., Park S. K., Han J. W., Lee H. Y., Lee H. Y., Han G. Synthesis, enzymatic inhibition, and cancer cell growth inhibition of novel δ-lactam-based histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett. 2006;16:4068–4070. Fournel M., Trachy–Bourget M. C., Yan P. T., Kalita A., Bonfils C., Beaulieu C., Frechette S., Leit S., Abou–Khalil E., Woo S. H., Delorme D., MacLeod A. R., Besterman J. M., Li Z. Sulfonamide anilides, a novel class of histone deacetylase inhibitors, are antiproliferative against human tumors. Cancer Res. 2002;62:4325–4330. Owa T., Yoshino H., Yoshimatsu K., Nagasu T. Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr. Med. Chem. 2001;8:1487–1503. Bouchain G., Delorme D. Novel hydroxamate and anilide derivatives as potent histone deacetylase inhibitors: synthesis and antiproliferative evaluation. Curr. Med. Chem. 2003;10:2359–2372. Uesato S., Kitagawa M., Nagaoka Y., Maeda T., Kuwajima H., Yamori T. Novel histone deacetylase inhibitors: N-hydroxycarboxamides possessing a terminal bicyclic aryl group. Bioorg. Med. Chem. Lett. 2002;12:1347–1349. Lavoie R., Bouchain G., Frechette S., Woo S. H., Abou–Khalil E., Leit S., Fournel M., Yan P. T., Trachy–Bourget M. C., Beaulieu C., Li Z., Besterman J., Delorme D. Design and synthesis of a novel class of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 2001;11:2847–2850.

    1. Angibaud P., Arts J., Van Emelen K., Poncelet V., Pilatte I., Roux B., Van Brandt S., Verdonck M., De Winter H., Ten Holte P., Marien A., Floren W., Janssens B., Van Dun J., Aerts A., Van Gompel J., Gaurrand S., Queguiner L., Argoullon J. M., Van Hijfte L., Freyne E., Janicot M. Discovery of pyrimidyl-5-hydroxamic acids as new potent histone deacetylase inhibitors. Eur. J. Med. Chem. 2005;40:597–606. doi: 10.1016/j.ejmech.2005.01.008. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources