Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:428:145-60.
doi: 10.1016/S0076-6879(07)28008-5.

Hyperosmotic activation of the CD95 system

Affiliations
Review

Hyperosmotic activation of the CD95 system

Roland Reinehr et al. Methods Enzymol. 2007.

Abstract

Cell shrinkage, nuclear condensation, DNA fragmentation, and apoptotic body formation are hallmarks of programmed apoptotic cell death. Herein, apoptotic volume decrease (AVD) is an early and ubiquitous event. Conversely, in hepatocytes, hyperosmotic cell shrinkage leads to an activation of the CD95 death receptor system, which involves CD95 tyrosine phosphorylation, CD95 oligomerization, and subsequent trafficking of the CD95 to the plasma membrane, and sensitizes hepatocytes toward CD95 ligand (CD95L)-induced apoptosis. Early signaling events leading to CD95 activation by hyperosmolarity have been identified. In hepatocytes, hyperosmotic exposure induces an almost instantaneous acidification of an acidic sphingomyelinase (ASM) containing endosomal compartment, which is followed by an increase in the intracellular ceramide concentration. Inhibition of anion channels or the vacuolar-type H(+)-ATPase abolishes not only endosomal acidification and subsequent ceramide generation, but also the otherwise observed hyperosmotically induced generation of reactive oxygen species (ROS) by NADPH oxidase isoforms. Hyperosmolarity-induced ROS formation then leads to a Src-family kinase Yes-mediated activation of the epidermal growth factor receptor (EGFR) and to an activation of the c-Jun-N-terminal kinase (JNK). JNK then provides a signal for CD95/EGFR association and subsequent CD95 tyrosine phosphorylation, which is mediated by the EGFR tyrosine kinase activity. CD95 tyrosine phosphorylation then allows for CD95 receptor oligomerization, translocation of the CD95/EGFR protein complex to the plasma membrane, and formation of the death inducing signaling complex (DISC). Mild hyperosmotic exposure, that is, 405 mosmol/liter, does not lead to a reduction of cell viability, even if DISC formation and subsequent caspase 8 and 3 activation occur, but sensitizes hepatocytes to CD95L-induced apoptosis. However, activation of the CD95 system by a more severe hyperosmotic challenge (>505 mosmol/liter) is followed by execution of the apoptotic cell death. Other covalent modifications of CD95, such as CD95 tyrosine nitration or CD95 serine/threonine phosphorylation, were shown to inhibit the CD95 activation process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources