Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007:428:355-72.
doi: 10.1016/S0076-6879(07)28021-8.

Effects of osmolytes on protein folding and aggregation in cells

Affiliations

Effects of osmolytes on protein folding and aggregation in cells

Zoya Ignatova et al. Methods Enzymol. 2007.

Abstract

Nature has developed many strategies to ensure that the complex and challenging protein folding reaction occurs in vivo with adequate efficiency and fidelity for the success of the organism. Among the strategies widely employed in a huge range of species and cell types is the elaboration of small organic molecules called osmolytes that offset the potentially damaging effects of osmotic stress. While considerable knowledge has been gained in vitro regarding the influence of osmolytes on protein structure and folding, it is of great interest to probe the effects of osmolytes in cells. We have developed an in-cell fluorescent-labeling method that enables the study of protein stability and also protein aggregation in vivo. We utilize a genetically encoded tag called a tetra-Cys motif that binds specifically to a bis-arsenical fluorescein-based dye "FlAsH"; we inserted the tetra-Cys motif into a protein of interest in such a way that the FlAsH signal reported on the state of folding or aggregation of the protein. Then, we designed protocols to assess how various osmolytes influence the stability and propensity to aggregate of our protein of interest. These are described here. Not only are there potential biotechnological applications of osmolytes in the quest to produce greater quantities of well-folded proteins, but also osmolytes may serve as tools and points of departure for therapeutic intervention in protein folding and aggregation diseases. Having in vivo methods to analyze how osmolytes affect folding and aggregation enhances our ability to further these goals greatly.

PubMed Disclaimer

Publication types

LinkOut - more resources